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Abstract Metasomatized mantle xenoliths containing hydrous minerals, such as amphiboles, serpentine,
and phlogopite, likely represent the potential mineralogical compositions of the metasomatized upper mantle,
where low seismic velocities are commonly observed. This study presents the first experimentally determined
single‐crystal elasticity model of an Fe‐free near Ca, Mg‐endmember amphibole tremolite at high pressure and/
or temperature conditions (maximum pressure 7.3(1) GPa, maximum temperature 700 K) using Brillouin
spectroscopy. We found that sound velocities of amphiboles strongly depend on the Fe content. We then
calculated the sound velocities of 441 hydrous‐mineral‐bearing mantle xenoliths collected around the globe, and
quantitatively evaluated the roles that amphiboles, phlogopite and serpentine played in producing the low
velocity anomalies in the metasomatized upper mantle.

Plain Language Summary Amphiboles are the most widely distributed hydrous minerals resulting
from metasomatism in the upper most mantle. We measured sound velocities of tremolite (Ca, Mg endmember
of the amphibole series) at high pressures and high temperatures by Brillouin spectroscopy. Based on global
hydrous‐mineral‐bearing mantle xenoliths record, we quantitively evaluated the contributions of amphiboles,
serpentine, and phlogopite to low velocity anomalies and water storage in the upper most mantle. We found the
existence of hydrous minerals (amphiboles, serpentine, and phlogopite) remains a viable explanation for the low
velocity anomalies in the upper most mantle (e.g., mid‐lithosphere discontinuity). Compared to serpentine and
phlogopite, although the amount of velocity reduction caused by amphibolization is moderate, the formation of
amphiboles does not require K, Al, Si‐rich environments like phlogopite, or exceedingly water‐rich
environments like serpentine.

1. Introduction
Water is usually transported to the deep Earth in the form of hydroxyl in mineral structures, thus quantifying the
abundance and spatial distribution of hydrous minerals inside the Earth is crucial to understanding the water cycle
and budget in the Earth's system (Ohtani, 2015). The most common hydrous minerals in the upper mantle xe-
noliths are amphiboles, serpentine, and phlogopite (PetDB database, https://doi.org/10.1594/IEDA/111309).
Amphiboles can host ∼2 wt% water and be stable up to 3 GPa at ∼1000°C (Kovács et al., 2021). The pressure
stability field of phlogopite, which contains ∼3 wt% water, increases from 4 to 5 GPa at ∼1300°C to 9 GPa at
∼1000°C (Frost, 2006). Similarly, serpentine with∼13 wt%water, stable up to 7 GPa at 550°C, dehydrates at only
2.5 GPa when temperature exceeds 700°C (Kawamoto et al., 2013). Hydrous minerals are usually seismically
slower than nominally anhydrous minerals (NAMs), the metamorphic reactions that form hydrous minerals from
NAMs likely cause various low‐velocity anomalies (e.g., Selway et al., 2015).

Under stable cratons, 2%–7% shear wave velocity (Vs) drops have been widely observed at 70–100 km depth (Fu
et al., 2022; Rader et al., 2015). They are commonly interpreted as the mid‐lithosphere discontinuity (MLD), since
continental lithosphere is typically thicker than 130 km (Table S1 in Supporting Information S1). The formation
mechanisms of MLD include: (a) partial melting (Thybo & Perchuć, 1997), (b) elastically accommodated grain‐
boundary sliding (Karato et al., 2015), (c) seismic anisotropy (e.g., Yuan & Romanowicz, 2010), (d) change in
Mg# (Yuan & Romanowicz, 2010), and (e) hydrous minerals resulted from mantle metasomatism (Selway
et al., 2015). Although Selway et al. (2015) suggested the existence of hydrous minerals among the most likely
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causes of MLD, this conclusion has been challenged by Saha et al. (2021). With ≤10 vol% amphibole and ≤2
vol% phlogopite in the globally averaged cratonic lithospheric mantle composition, the metasomatism induced Vs
reduction is only 2%–3% (Saha et al., 2021). Nevertheless, local chemical composition in metasomatized mantle
can easily deviate from the global average, thus higher proportions and different combinations of hydrous
minerals are possible (Tharimena et al., 2016; Wang & Kusky, 2019; Wölbern et al., 2012). Therefore, presence
of hydrous minerals, such as amphiboles, serpentine, and phlogopite, is still a potential candidate to explain
the MLD.

In subduction zones, low velocity layers have also been reported. Beneath NE Japan, a dipping low velocity layer
(− 10% Vs) is observed atop the subducting Pacific slab, extending from ∼40 to ∼80 km depths (Kawakatsu &
Watada, 2007; Nakajima et al., 2009; Tsuji et al., 2008). Interestingly, it gradually disappears at ∼80 km, and a
new low velocity layer (− 8% ∼ − 10% Vs) immediately appears and extends down to ∼130 km. This is possibly
caused by the dehydration of lawsonite and amphiboles at ∼80 km depth and the subsequent formation of a
serpentine and chlorite layer above the slab at ∼80–130 km (Kawakatsu & Watada, 2007; Tsuji et al., 2008).
Understanding the distribution and abundance of different hydrous minerals in these low velocity layers can
provide insights to water transport in subduction zones.

A few previous studies estimated the amount of hydrous minerals that are required to cause the aforementioned Vs
reductions in the upper mantle (Peng & Mookherjee, 2020; Rader et al., 2015). However, most of these studies
utilized a simplified approach by increasing the fractions of hydrous minerals in a model peridotite (e.g., pyrolite)
without considering actual reactions between different minerals. Saha et al. (2021) went one step further by
considering previous phase equilibrium experiments, but covered limited composition space of the metasomat-
ized upper mantle. The metasomatized upper mantle has strong compositional heterogeneity mainly due to wide
compositional range of the migrating mantle melts/fluids (Batanova et al., 2011). Xenoliths records represent a
much wider sampling of the mineralogical compositions in the metasomatized upper mantle (James et al., 2004;
Kolesnichenko et al., 2017; Schutt & Lesher, 2010). The sound velocities of worldwide hydrous‐mineral‐bearing
xenolith records are thus useful for quantitatively evaluating the contributions of different hydrous minerals to
various upper mantle low velocity anomalies (James et al., 2004; Tommasi & Ishikawa, 2014).

Compared with serpentine and phlogopite, amphiboles are more abundant in mantle xenoliths (PetDB database).
However, the P‐T dependent single‐crystal elastic properties of amphiboles are not well‐constrained. Despite the
two first‐principles computational studies on tremolite and pargasite (Peng & Mookherjee, 2020; Saha
et al., 2021), single‐crystal elasticity of amphiboles has only been experimentally determined at ambient con-
ditions (Brown & Abramson, 2016). Upper mantle amphiboles are complicated solid solutions usually between
pargasite, edenite, tremolite, and actinolite. Separating the effects of different compositions on the elasticity of
amphiboles is crucial. As the most important elemental substitution in mantle minerals, Fe‐Mg substitution has a
first‐order effect on the elasticity of amphiboles. Due to the complex Na, Al‐Si coupled substitution in pargasite,
studying Fe‐Mg solid solution is more straightforward in tremolite. Thus, we conducted the first single‐crystal
Brillouin spectroscopy experiments on Fe‐free tremolite at pressures up to 7.3 (1) GPa and temperatures up to
700 K. In conjunction with previous studies on serpentine, phlogopite, and Fe‐bearing amphiboles, we estimated
the effect of Fe on the sound velocities of amphiboles, calculated sound velocities of 441 hydrous‐mineral‐bearing
xenoliths worldwide, and finally modeled the effects of different hydrous minerals on low velocity anomalies in
the upper mantle.

2. Methods
2.1. Experiments

We double‐side polished three natural tremolite crystals from Merelani, Tanzania, to ∼20 μm thick, inspected
them to be inclusion and scratch free under microscope, then measured the chemical composition using the JEOL
8200 Electron Microprobe Analyzer (EPMA) hosted at the University of New Mexico (UNM). The unit cell
parameters at ambient condition and the planes normal of the crystals were determined using the single‐crystal X‐
ray diffractometer at the X‐ray Atlas Diffraction Lab at the University of Hawaiʻi at Mānoa and sector 13‐BM‐C,
GeosoilEnviorCars (GSECARS), Advanced Photon Source (APS), Argonne National Laboratory (ANL) (Text
S1 in Supporting Information S1). Using the obtained unit cell parameters a = 9.915(1) Å, b = 17.983 (1) Å,
c = 5.296(1) Å, β = 105.352(5)° and the chemical composition (Na0.040(5)K0.020(4))Ca2.00(1)(Mg4.90(3)Mn0.009(2))
(Si7.82(2)Al0.28(1))O22(OH1.90(1),F0.10(1)) (Tables S2 and S3 in Supporting Information S1), ambient density (ρ0)
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was calculated as 2.97 (2) g/cm3. The planes of the three crystals are (0.7068, 0.7067, − 0.0303), (0.9826,
− 0.1851, − 0.0130), and (− 0.3336, 0.9427, 0.0010) in fractional coordinates.

Three polished crystals were then loaded into three different BX90 Diamond Anvil Cells (DACs) with 450 μm
culet diamonds. The sample chamber was created by drilling a 280 μm‐diameter hole in a preindented ∼55 μm
thick Re gasket. Two ruby spheres were loaded as pressure markers (Datchi et al., 2007). Argon or neon was
loaded as pressure‐transmitting medium (Rivers et al., 2008). High temperatures were generated by a platinum
resistive heater and measured by two K‐type thermocouples glued near the diamond culet (Lai et al., 2020).
Temperature differences given by two thermocouples were less than 15 K up to 700 K.

Brillouin spectroscopy experiments were conducted under 50° symmetric forward scattering geometry using a
532 nm single‐mode laser. The scattering angle calibrated using Corning 7980 glass was 50.4°. Compressional
wave velocities (Vp) and Vs were measured at 36 Chi angles at each P‐T condition (Figure 1a). Figure S2 in
Supporting Information S1 shows typical Brillouin spectra. We conducted experiments at 0 GPa up to 700 K, and
at 300 K up to 7.3(1) GPa. Simultaneously high P‐T data were only acquired at 4.0 (2) GPa 400 K with dozens of
trials (Text S2 in Supporting Information S1).

2.2. Modeling

We analyzed 4473 mantle xenoliths data with published mineral proportions from the PetDB database and found
that amphiboles, serpentine and phlogopite are the most prevalent hydrous minerals, present in ∼6.8%, ∼3.0%,

Figure 1. (a) Comparison between experimentally measured sound velocity data (squares) and the sound velocities predicted from the best‐fit Cij model for different
crystals at different P‐T conditions. The error bars of individual sound velocity measurements are smaller than the symbols. (b) Cijs of tremolite in this study (some error
bars are smaller than symbols) and previous studies. Solid lines represent finite strain EOS fitting results in this study. Cijs by local density approximation in Peng and
Mookherjee (2020) have been transformed to match the Cartesian coordinate system used in this study and Brown and Abramson (2016).
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and ∼2.7% of all xenoliths, respectively. Other hydrous minerals are less common (e.g., chlorite: ∼0.3%, law-
sonite: <0.1%). Additionally, we incorporated xenolith data from publications not included in PetDB (see Data
Availability Statement). A total of 441 mantle xenoliths data were selected and used in this study using four
criteria: (a) containing amphiboles, phlogopite or serpentine; (b) excluding samples that were altered on the
Earth's surface; (c) no melt (glass); (d) containing <1 vol% of carbonate minerals, opaque minerals (e.g.,
magnetite) and other less common hydrous minerals.

We calculated Vp and Vs of metasomatized upper mantle lithologies represented by xenoliths with amphiboles/
phlogopite/serpentine at 2.5 GPa and 973 K under Voigt‐Reuss‐Hill averaging scheme, using thermoelastic
properties of minerals summarized in Tables S5 and S6 of the Supporting Information S1 and the 3rd or 4th order
finite strain equation of state (EOS) (Texts S3 and S4 in Supporting Information S1).

3. Results and Discussion
3.1. Elastic Properties of Tremolite

We utilized the conventional settings defined by the Institute of Electrical and Electronics engineers to align the
cartesian coordinates for elasticity tensor with respect to the monoclinic fractional coordinates (Brainerd
et al., 1949): Y//b‐axis, Z//c‐axis, X//a*, which is perpendicular to Y and Z. With the measured Vp‐Vs data
set along different phonon directions of tremolite, we used Christoffel equation to calculate the best‐fit Cij model
at each P‐T condition (Figure 1). Most Cijs are well‐constrained as evidenced by the sensitivity test and trade‐off
correlation matrices (Figure S3, Table S8 in Supporting Information S1). The non‐ambient condition densities, P‐
T derivatives of Ks, G and Cijs are calculated based on the P‐T‐Vp‐Vs data set using temperature‐dependent 3rd/
4th order finite strain EOS (Davies & Dziewonski, 1975; Duffy &Anderson, 1989). The details are shown in Text
S4 of the Supporting Information S1.

All 13 single‐crystal elastic moduli (Cijs) of tremolite increase with pressure (Figure 1). The diagonal Cijs, C13,
and C46 decrease with temperature, while C12, C23, C15, C25, and C35 unexpectedly increase with temperature. As
a chain silicate, tremolite's elastic stiffness is heavily controlled by the topology of the Si tetrahedra network. T1
silicate tetrahedra of tremolite shows negative thermal expansion at room‐pressure high‐temperature conditions
(Sueno et al., 1973), causing tetrahedral chain shrinkage along [010] direction and stronger distortion between T1
and T2 tetrahedra at high temperatures (Hawthorne & Grundy, 1976). A shrinked tetrahedra chain with increased
distortion is likely more resistant to stress, resulting in positive temperature derivatives of C12 and C23. Future
studies are needed to quantitatively validate this hypothesis.

At ambient condition, most Cijs (e.g., C11, C22, C33) of the tremolite sample in this study are larger than those of
the Fe‐bearing tremolite in Brown and Abramson (2016) (Figure 1b). Although the absolute values of some
ambient condition Cijs of end‐member tremolite (Ca2Mg5(Si8O22)(OH)2) computationally determined by Peng
and Mookherjee (2020) are very different from this study (e.g., C33, C55, C13, C23), they actually converge with
the values presented in this study at high‐pressure conditions. Most of the Cijs which do not converge at higher
pressures share similar pressure derivatives (e.g., C22, C12, C44, C66) between this study and Peng and Moo-
kherjee (2020). We also calculated the linear compressibilities of tremolite based on the ambient Cijs: βa
(0.005 GPa− 1) > βb (0.0027 GPa

− 1) > βc (0.0021 GPa
− 1) (Table S9 in Supporting Information S1). This general

relationship is consistent with what was found in previous XRD experiments (Comodi et al., 1991; Ott
et al., 2023), although βa and βc obtained in this study are smaller than the values given in Ott et al. (2023). Peng
and Mookherjee (2020) and Brown and Abramson (2016) both suggested βa (0.0063 GPa− 1) > βc
(0.0027 GPa− 1) > βb (0.0026 GPa− 1). The inconsistencies between these studies are likely related to different
chemical compositions (e.g., F, Al, and Fe) and the use of different methods (e.g., computation vs. experiment).

In terms of aggregate elastic properties, within the P‐T range we studied, no abrupt sound velocity changes were
observed as a result of the compression mechanism change at ∼5 GPa suggested by Ott et al. (2023). The best‐fit
aggregate elastic properties are: Ks0 = 98 (5) GPa, G0 = 62 (3) GPa, (∂Ks/∂P)T0 = 3.5 (1), (∂G/∂P)T0 = 1.15 (5),
(∂Ks/∂T )P0 = − 0.004 (2) GPa/K, and (∂G/∂T )P0 = − 0.011 (1) GPa/K. Compared with multiple Fe‐bearing
amphibole samples measured in Brown and Abramson (2016), the Fe‐free near endmember tremolite measured
in this study shows the highest sound velocities (Figure 2b). As shown in Figures 2b–2d, Vp and Vs of amphiboles
decrease almost linearly with Fe content, whereas their correlations with Al content or A site occupation seem
weak. Compared with previous static compression XRD studies, the Ks0 of 98 (5) GPa and (∂Ks/∂P)T0 of 3.5 (1)
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obtained in this study are significantly higher and lower than the KT0 of 72
(7) GPa and (∂KT0/∂P)T0 of 8.6 (42) obtained in Ott et al. (2023), which cannot
be explained by the difference between isothermal and adiabatic elasticity.
Instead, it is related to the higher F content in the tremolite sample used in Ott
et al. (2023), which can soften the bulk and shear modulus of amphiboles (e.g.,
glaucophane, Mookherjee & Bezacier, 2012), as well as the well‐known
tradeoffs between KT0 and (∂KT0/∂P)T0 in static compression XRD studies.

The average chemical composition of mantle amphiboles was calculated from
the 142 EPMA composition records from the mantle xenoliths database (El
Messbahi et al., 2015; Ho et al., 2006; Kaczmarek et al., 2016a; Matusiak‐
Małek et al., 2017a; Tilhac et al., 2016). An average chemical composition is
obtained as Na0.9(3)K0.2(1)Ca1.7(1)Mg3.6(4)Fe0.8(3)Al2.2(6)Si6.3(4)O22(OH)2,
which is similar to sample 8 measured in Brown and Abramson (2016).
Utilizing the ambient elasticity data of sample 8 in Brown and Abram-
son (2016), and the P‐T derivatives of the elastic moduli determined in this
study, we calculated the sound velocities of a typical mantle amphibole
(Figure 2f). As expected, both tremolite and the typical mantle amphibole are
seismically slower than NAMs, but faster than phlogopite and antigorite
(Figures 2e and 2f).

Tremolite has high elastic anisotropy, the single‐crystal Vp and Vs azimuthal
anisotropy as well as Vs radial anisotropy are ∼30% at 0–3 GPa. Kim and
Jung (2019) suggested that deformed amphibolites can produce 2%–13% Vp
and Vs azimuthal anisotropy depending on the type of crystal preferred
orientation (CPO). Unfortunately, CPO data of amphiboles are limited in
xenolith records, distinguishing the primary CPOs formed in the mantle from
the secondary CPOs formed during exhumation remains challenging
(Puziewicz et al., 2023). Therefore, elastic anisotropy of tremolite was not
considered in our modeling. Future studies are needed to take this important
factor into account.

3.2. Hydrous Minerals in Xenoliths

Most hydrous‐mineral‐bearing xenoliths are peridotite or pyroxenite, with
some amphibolite or serpentinite. Amphiboles tend to coexist with clino-
pyroxene in xenoliths (Figure S1a in Supporting Information S1). Previous
petrological studies have noted that amphibole and clinopyroxene grains tend
to be juxtaposed in the lherzolite xenoliths from Alaska and North China
Craton (Francis, 1976; Wang et al., 2021; Xu et al., 2010). This mineral as-
sociation is explained by: (a) amphiboles and clinopyroxenes found in xe-
noliths are both enriched in Ca and Mg; (b) clinopyroxenes and amphiboles
are both near‐liquidus phases of interstitial melts in the hydrous basalt‐
peridotite reaction experiments (Wang et al., 2021). In contrast, serpentine

fraction is negatively correlated with olivine and orthopyroxene fractions (Figure S1c in Supporting Informa-
tion S1), since serpentine grows at the expense of olivine and orthopyroxene during mantle metasomatism
(Andréani et al., 2007). A recent study suggested that amphiboles are not stable in a typical hydrated upper mantle
with 50–200 ppm water along a continental geotherm (Juriček & Keppler, 2023). However, with increasing water
activity, the stability field of amphiboles is displaced to higher pressures and lower temperatures. As shown in
Figure 4e, amphibole‐bearing metasomatized lithospheric mantle can host up to 2 wt% water, the existence of
amphiboles in cold cratonic mantle, at least locally, cannot be excluded.

3.3. Sound Velocities of Hydrous‐Mineral‐Bearing Xenoliths

We explored the relationship between Vp, Vs and different mineral proportions in mantle xenoliths (Figure 3). For
the xenoliths with <5 vol% serpentine/phlogopite, olivine abundance has little effect on sound velocities because

Figure 2. (a) VP and VS of isotropic polycrystalline tremolite aggregates as a
function of pressure along different isotherms in this study. Solid lines
represent 3rd order finite strain EOS fitting results for tremolite in this study.
Effect of (b) Fe, (c) Al, and (d) A site occupation on sound velocities of
amphiboles at ambient condition. (e) Sound velocities of tremolite and upper
mantle NAMs. (f) Sound velocities of tremolite, typical mantle amphibole,
serpentine and phlogopite. The elasticity data used to calculate sound
velocities of minerals are compiled in Table S6 of the Supporting
Information S1. The shaded red region in (b) shows the Fe content range of
typical amphiboles frommantle xenoliths, the shaded gray regions in (d) and
(c) show that Al content and A site occupation have limited effects on sound
velocities of amphiboles. Vp and Vs are reduced by 220 and 170 m/s if the
total Fe atom number per formula unit (F.U.) increases by 1.
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olivine shares similar sound velocities with other NAMs when compared to hydrous minerals. For the xenoliths
with >5 vol% serpentine/phlogopite, their sound velocities increase with olivine fractions since phlogopite/
serpentine grows at the expense of olivine. The relationships between pyroxene fractions and sound velocities of
xenoliths are similar (Figures 3b and 3c), and can be explained similarly.

Garnet mainly exists in the xenoliths with <5 vol% serpentine/phlogopite (Figure 3d). Increasing garnet abun-
dance leads to higher sound velocities since garnet is seismically faster than other upper mantle NAMs
(Figure 2e). Conversely, high amphiboles, phlogopite, or serpentine fractions decrease sound velocities. The
effects of phlogopite and serpentine are stronger than amphiboles since they are seismically slower (Figure 2f).

4. Implications
Amphiboles are found to coexist with either serpentine or phlogopite in mantle xenoliths, but not both (Table S4
in Supporting Information S1). The effects of amphibole and serpentine, as well as amphibole and phlogopite
abundance, on the sound velocities of metasomatized upper mantle lithologies are shown in Figures 4a–4d.
Assuming amphiboles, phlogopite, and serpentine contain ∼2, 3, and 13 wt% water, respectively, we calculated
the seismic velocity reduction caused by different hydration levels in the upper mantle (Figures 4e and 4f).

4.1. Implications for the Velocity Drop at MLD

To achieve the observed 2%–7% Vs reduction at MLD under continental cratons (Fu et al., 2022; Rader
et al., 2015) (Table S1 in Supporting Information S1), 10–60 vol% amphiboles, 3–15 vol% phlogopite, or 5–15
vol% serpentine are required (Figures 4a–4d). 3–15 vol% phlogopite or serpentine are commonly found in xe-
noliths (Figures S1e and S1f in Supporting Information S1). Although amphibolites with ∼60 vol% amphiboles
are rare (Figure S1d in Supporting Information S1), the wide coexistence between amphiboles and serpentine/
phlogopite in xenoliths records can easily explain the 2%–7% Vs reduction at MLD (Figure 4, e.g. Wilcza Gora,
Matusiak‐Małek et al., 2017a). Thus, existence of hydrous minerals cannot be ruled out as a potential explanation

Figure 3. Effects of (a) olivine, (b) orthopyroxene, (c) clinopyroxene, (d) garnet, (e) amphiboles, (f) phlogopite, (g) serpentine proportions on the sound velocities of
hydrous‐mineral‐bearing xenoliths.
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for MLD, at least locally. According to Figure 4e, 2%–7% Vs reduction suggests∼0.3–2 wt%water is likely stored
at MLD depths if metasomatism is the main cause.

Significant Vs drops of 12%–24% have also been reported under East Africa at 50–100 km depths, with a 12% Vs
reduction beneath the Tanzania Craton and a 24% Vs reduction below the Albert‐Edward rift (Wölbern
et al., 2012). Due to the very high abundance of the phlogopite‐rich xenoliths found in these regions, Wölbern
et al. (2012) proposed that the MLD under East Africa was related to an altered lithospheric mantle enriched in
phlogopite, resulted from melt infiltration. A 12% Vs reduction could be explained by a metasomatized mantle
containing ∼30 vol% phlogopite (Figure 4a), consistent with the record from local xenoliths (Wölbern
et al., 2012). However, a 24% Vs reduction beneath the Albert‐Edward rift would require >60 vol% phlogopite,
which is rarely observed in nature. Therefore, an alternative explanation is needed (e.g., partial melt, Thybo and
Perchuć (1997)).

4.2. Implications for the Low Velocity Layers Atop Subducting Slabs

Kawakatsu and Watada (2007) and Tsuji et al. (2008) have identified a dipping low velocity layer (− 8% to − 10%
Vs) above the Pacific slab at 80–130 km depths under NE Japan. This layer is interpreted as a hydrous mineral‐rich

Figure 4. (a) Vs, and (b) Vp anomalies of metasomatized mantle rocks resulted from (co)existence of amphibole or
phlogopite. (c) Vs, and (d) Vp anomalies of metasomatized mantle rocks resulted from (co)existence of amphibole or
serpentine. (e) Vs, and (f) Vp anomalies of metasomatized mantle rocks as a function of bulk rock water content. In (a)–(d),
the dots refer to Vp and Vs anomalies calculated from xenolith data in Table S4 of the Supporting Information S1, and the
numbers refer to Vp and Vs anomalies along different contours.
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layer, mainly composed of serpentine, formed by the reactions between slab‐derived fluids and peridotites (Tsuji
et al., 2008). If this is true, according to Figure 4, the − 8% to − 10% low velocity anomalies above the Pacific slab
could be explained by 20–25 vol% serpentine, corresponding to ∼2%–3% water in the mantle wedge beneath NE
Japan.

4.3. Velocity Reduction Efficiency With Limited Water Supply in the Mantle

To achieve the same velocity reduction, the serpentinized mantle requires 3–4 times more water than the
phlogopite‐bearing mantle, with the amphibole‐bearing but phlogopite/serpentine‐free mantle in between
(Figures 4e and 4f). Although the sound velocities of amphiboles are only moderately low compared with mantle
NAMs, the amount of water that is needed to form amphiboles is small (only ∼2 wt%) compared with serpentine
(∼13 wt%). Therefore, with the same amount of water supply, amphibolization is more effective in reducing the
seismic velocities than serpentinization. Similarly, despite the moderately low water content (∼3 wt%) in
phlogopite, its sound velocities are even lower than serpentine, making it the most efficient seismic velocity
reducer in the metasomatized upper mantle. The formation of phlogopite, serpentine, and amphiboles in nature is
controlled by many factors: parent rock composition, melt composition, P‐T conditions, etc (Nielson
et al., 1993a). For example, K, Al, Si‐rich fluids derived from the top sedimentary layer of subducting slabs could
react with peridotite to form phlogopite, while serpentine is a commonmetasomatism product in ultramafic/mafic
lithologies (Bryant et al., 2007; Poli & Schmidt, 2002). Compared to serpentine and phlogopite, amphiboles'
formation is less restricted by parent rock or fluid composition, due to their highly flexible crystal structures with
7 different cation sites (Hawthorne et al., 2007). Consequently, amphiboles can form in different hydrous up-
permost mantle settings, as seen in the wide coexistence of amphiboles with either serpentine or phlogopite in
xenolith records (Figures 4a–4d, Table S4 in Supporting Information S1). As shown in Figures 4a–4d, there is no
clear relationship between the amphiboles fraction and phlogopite/serpentine fraction. Future investigations of
the relationship between different mineral proportions with respect to the whole rock composition and water
content are needed for better quantification of the seismic velocity reduction caused by metasomatism in the
Earth's upper mantle.

Data Availability Statement
The first part of mantle xenolith data used in this study is publicly available in PetDBDatabase (https://doi.org/10.
1594/IEDA/111309). The second part of mantle xenolith data used in this research that is not included in PetDB is
available in Gorring and Kay (2000a), Ho et al. (2000a), Ionov et al. (2002a), Kaczmarek et al. (2016a), Matusiak‐
Małek et al. (2017a), Nielson et al. (1993a), Powell et al. (2004a), Raffone et al. (2009a), Rosatelli et al. (2007a),
Smith et al. (1999a), Szabó and Taylor (1994a), and Xu et al. (2003a). All derived mantle xenolith data from
PetDB and previous publications are available via Zenodo through the following link: https://doi.org/10.5281/
zenodo.7909294.
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