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Constraining the phase relations and valence state of iron-
bearing oxides is crucial to understanding the chemistry of Earth’s 
mantle. In this issue of American Mineralogist, Uenver-Thiele et 
al. (2017a) present an experimental study on the phase diagrams 
of magnesioferrite-magnetite solid solutions at high pressures 
and high temperatures. By analyzing the compositions of the 
quenched products, Uenver-Thiele et al. were able to constrain the 
phase diagram of the (Mg,Fe2+)Fe2

3+O4 series, and they identified 
several new phases with non-conventional stoichiometry. From 
the phase diagrams of (Mg,Fe2+)Fe2

3+O4 spinels determined in 
this study and the stability fields of the new phases, the authors 
proposed an empirical method to recover the petrological history 
of magnesium-iron oxide inclusions in natural diamonds.

Oxygen and iron are the two most abundant elements in the 
Earth, and their compounds, the iron oxides, are common in 
the crust and the mantle. Iron is the most important multivalent 
transitional metal in the mantle, and the stability fields of dif-
ferent iron oxides covers the mantle conditions in the P-T-fO2 
space. Certain iron oxides, such as magnetite (Fe3O4) and wüstite 
(Fe1–xO) and their solid solutions with periclase (MgO), have 
been used as scales to constrain the P-T-fO2 history of petrologi-
cal assemblages. One application of such an “oxide scale” is to 
determine the petrological history of diamonds with inclusions. 
For example, diamonds with ferropericlase [(Mg,Fe)O] inclu-
sions are usually associated with a lower mantle origin (Wirth et 
al. 2014), whereas magnesioferrite (MgFe2O4) inclusions have 
a maximum formation pressure of 8–10 GPa (Uenver-Thiele 
et al. 2017b). The oxygen fugacity of petrological experiment 
is usually associated with a certain redox reaction, and redox 
reactions between iron oxides, such as wüstite, magnetite, and 
hematite, have been established as standard oxygen fugacity 
buffers (Myers and Eugster 1983).

In the past few years, several non-conventional iron oxides, 
including Fe4O5, Fe5O6, Fe5O7, Fe7O9, Fe13O19, Fe25O32, and FeO2 
have been identified experimentally (Bykova et al. 2016; Hu et al. 
2016; Lavina et al. 2011; Lavina and Meng 2015; Merlini et al. 
2015; Sinmyo et al. 2016). These non-conventional iron oxides 
form homologous series from several fundamental iron-oxygen 
polyhedral blocks (Bykova et al. 2016; Guignard and Crichton 
2014). Some of these non-conventional iron oxides are quench-
able at ambient condition with oxygen fugacities appropriate to 
the mantle (Guignard and Crichton 2014; Lavina et al. 2011). 
Besides pure iron oxides, their variants have been identified by 
substituting Fe2+ with Mg2+ (Boffa Ballaran et al. 2015; Uenver-
Thiele et al. 2017a, 2017b). These non-conventional oxides could 
be incorporated into the “oxide scale” to constrain the P-T-fO2 

history of petrological assemblages, once their phase diagrams 
and stability fields are established.

In the study by Uenver-Thiele et al. (2017a), the phase 
relations of magnesium-iron oxide spinels were explored at 
high-pressure and high-temperature conditions. Two starting 
materials, MgFe2O4 and Mg0.5Fe2+

0.5Fe2
3+O4, were compressed with 

multi-anvil presses to 23 GPa and 1500 °C. The oxygen fugacity 
was carefully controlled in the experiments. The run products 
were quenched to ambient conditions before further analysis with 
electron microprobe, backscattered electron image, and X-ray 
powder diffraction.

Uenver-Thiele et al. first investigated the MgFe2O4 system. 
They found that MgO+Fe2O3 were the stable assemblage at 
1200 °C. At 20 GPa and 1400–1500 °C, the coexistence of 
Mg2Fe2O5+Fe2O3 and hp-MgFe2O4 phases were observed, and 
a new phase with the stoichiometry of Mg3Fe4O9 were found at 
20 GPa, 1300 °C and 23 GPa, 1500 °C, coexisting with Fe2O3 
and hp-MgFe2O4. Uenver-Thiele et al. suggested that MgO, 
Fe2O3, Mg2Fe2O5, and Mg3Fe4O9 could coexist at ~19 GPa and 
1200–1250 °C.

As for the Mg0.5Fe2+
0.5Fe2

3+O4 system, periclase was no longer 
observed in the investigated P-T range. The Mg0.5Fe2+

0.5Fe2
3+O4 

spinel broke down to MgFe2+Fe2
3+O5 + Fe2O3 at 11 GPa and 

1000–1600 °C, and the phase boundary was indistinguishable 
from that for the Fe3O4 end-member (Woodland et al. 2012). 
When the pressure went higher than 16 GPa, a single phase of 
hp-Mg0.5Fe2+

0.5Fe2
3+O4 became stable. At 15 GPa and 1600 °C, 

Uenver-Thiele et al. identified a new phase of Mg1.37Fe2+
1.63Fe4

3+O9, 
another solid solution in the (Mg,Fe2+)3Fe4

3+O9 series. X-ray 
powder diffraction suggested that the (Mg,Fe2+)3Fe4

3+O9 had the 
same C2/m structure as Fe7O9 (Sinmyo et al. 2016).

One interesting application of this study is to constrain the 
precipitation condition of magnetite inclusions in diamonds. 
Uenver-Thiele et al. propose an empirical way to determine 
the precipitation pressure of the quenched magnetite inclu-
sions in diamonds: since the phase diagrams presented in 
this study suggest that the hp-(Mg,Fe2+)Fe2

3+O4 phase cannot 
directly transform into the spinel structure, if the precipitated 
magnetite inclusion has an euhedral morphology, it is likely to 
come from the partial oxidation of ferropericlase; otherwise, if 
the magnetite inclusion demonstrates a twinned texture, some 
kind of precursor phases such as the (Mg,Fe2+)2Fe2

3+O5 and/or 
(Mg,Fe2+)3Fe4

3+O9 phases might be involved in the precipitation 
process. To sum up, this study has extended our understanding 
about the high-pressure–high-temperature phase diagrams of 
magnesium-iron oxides, and provides more detailed constraints 
on the petrological history of natural diamonds that contain 
magnesium-iron oxide inclusions.
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