American Mineralogist, Volume 102, pages 1969—1970, 2017

HIGHLIGHTS AND BREAKTHROUGHS

Making a fine-scale ruler for oxide inclusions
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Constraining the phase relations and valence state of iron-
bearing oxides is crucial to understanding the chemistry of Earth’s
mantle. In this issue of American Mineralogist, Uenver-Thiele et
al. (2017a) present an experimental study on the phase diagrams
of magnesioferrite-magnetite solid solutions at high pressures
and high temperatures. By analyzing the compositions of the
quenched products, Uenver-Thiele et al. were able to constrain the
phase diagram of the (Mg,Fe*")Fe3*O, series, and they identified
several new phases with non-conventional stoichiometry. From
the phase diagrams of (Mg,Fe*)Fe3"O, spinels determined in
this study and the stability fields of the new phases, the authors
proposed an empirical method to recover the petrological history
of magnesium-iron oxide inclusions in natural diamonds.

Oxygen and iron are the two most abundant elements in the
Earth, and their compounds, the iron oxides, are common in
the crust and the mantle. Iron is the most important multivalent
transitional metal in the mantle, and the stability fields of dif-
ferent iron oxides covers the mantle conditions in the P-7-fo,
space. Certain iron oxides, such as magnetite (Fe;0,) and wiistite
(Fe,,O) and their solid solutions with periclase (MgO), have
been used as scales to constrain the P-7-fq, history of petrologi-
cal assemblages. One application of such an “oxide scale” is to
determine the petrological history of diamonds with inclusions.
For example, diamonds with ferropericlase [(Mg,Fe)O] inclu-
sions are usually associated with a lower mantle origin (Wirth et
al. 2014), whereas magnesioferrite (MgFe,0,) inclusions have
a maximum formation pressure of 8-10 GPa (Uenver-Thiele
et al. 2017b). The oxygen fugacity of petrological experiment
is usually associated with a certain redox reaction, and redox
reactions between iron oxides, such as wiistite, magnetite, and
hematite, have been established as standard oxygen fugacity
buffers (Myers and Eugster 1983).

In the past few years, several non-conventional iron oxides,
including Fe,Os, FesOq, FesO,, Fe;0q, Fe 30,0, Feys04,, and FeO,
have been identified experimentally (Bykova etal. 2016; Hu et al.
2016; Lavina et al. 2011; Lavina and Meng 2015; Merlini et al.
2015; Sinmyo et al. 2016). These non-conventional iron oxides
form homologous series from several fundamental iron-oxygen
polyhedral blocks (Bykova et al. 2016; Guignard and Crichton
2014). Some of these non-conventional iron oxides are quench-
able at ambient condition with oxygen fugacities appropriate to
the mantle (Guignard and Crichton 2014; Lavina et al. 2011).
Besides pure iron oxides, their variants have been identified by
substituting Fe?* with Mg?* (Boffa Ballaran et al. 2015; Uenver-
Thiele etal. 2017a,2017b). These non-conventional oxides could
be incorporated into the “oxide scale” to constrain the P-7-fo,
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history of petrological assemblages, once their phase diagrams
and stability fields are established.

In the study by Uenver-Thiele et al. (2017a), the phase
relations of magnesium-iron oxide spinels were explored at
high-pressure and high-temperature conditions. Two starting
materials, MgFe,0, and Mg, sFe3sFei 0., were compressed with
multi-anvil presses to 23 GPa and 1500 °C. The oxygen fugacity
was carefully controlled in the experiments. The run products
were quenched to ambient conditions before further analysis with
electron microprobe, backscattered electron image, and X-ray
powder diffraction.

Uenver-Thiele et al. first investigated the MgFe,0, system.
They found that MgO+Fe,O; were the stable assemblage at
1200 °C. At 20 GPa and 1400-1500 °C, the coexistence of
Mg,Fe,O5tFe,0; and hp-MgFe,O, phases were observed, and
a new phase with the stoichiometry of Mg;Fe,O, were found at
20 GPa, 1300 °C and 23 GPa, 1500 °C, coexisting with Fe,0;
and hp-MgFe,0,. Uenver-Thiele et al. suggested that MgO,
Fe,0s, Mg,Fe,0s, and Mg;Fe, O, could coexist at ~19 GPa and
1200-1250 °C.

As for the Mg, sFesFe3 O, system, periclase was no longer
observed in the investigated P-T range. The Mg, sFe%sFe3'O,
spinel broke down to MgFe?'Fe3"Os + Fe,O; at 11 GPa and
1000-1600 °C, and the phase boundary was indistinguishable
from that for the Fe;O, end-member (Woodland et al. 2012).
When the pressure went higher than 16 GPa, a single phase of
hp-Mg,sFetsFe3'O, became stable. At 15 GPa and 1600 °C,
Uenver-Thiele et al. identified a new phase of Mg, 5,Fe3’;Fei O,
another solid solution in the (Mg,Fe*");Fei O, series. X-ray
powder diffraction suggested that the (Mg,Fe*");Fe3 O, had the
same C2/m structure as Fe;O, (Sinmyo et al. 2016).

One interesting application of this study is to constrain the
precipitation condition of magnetite inclusions in diamonds.
Uenver-Thiele et al. propose an empirical way to determine
the precipitation pressure of the quenched magnetite inclu-
sions in diamonds: since the phase diagrams presented in
this study suggest that the hp-(Mg,Fe?")Fe3"O, phase cannot
directly transform into the spinel structure, if the precipitated
magnetite inclusion has an euhedral morphology, it is likely to
come from the partial oxidation of ferropericlase; otherwise, if
the magnetite inclusion demonstrates a twinned texture, some
kind of precursor phases such as the (Mg,Fe?"),Fe3"Os and/or
(Mg,Fe?);Fei"O, phases might be involved in the precipitation
process. To sum up, this study has extended our understanding
about the high-pressure—high-temperature phase diagrams of
magnesium-iron oxides, and provides more detailed constraints
on the petrological history of natural diamonds that contain
magnesium-iron oxide inclusions.
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