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Abstract Synchrotron‐based high‐pressure/high‐temperature single‐crystal X‐ray diffraction
experiments to ~24 GPa and 700 K were conducted on eclogitic garnets (low‐Fe: Prp28Alm38Grs33Sps1
and high‐Fe: Prp14Alm62Grs19Adr3Sps2) and omphacites (low‐Fe: Quad57Jd42Ae1 and high‐Fe:
Quad53Jd27Ae20), using an externally heated diamond anvil cell. Fitting the pressure‐volume‐temperature
data to a third‐order Birch‐Murnaghan equation of state yields the thermoelastic parameters including
bulk modulus (KT0), its pressure derivative (K′T0), temperature derivative ((∂KT/∂T)P), and thermal
expansion coefficient (αT). The densities of the high‐Fe and low‐Fe eclogites were then modeled along
typical geotherms of the normal mantle and the subducted oceanic crust to the transition zone depth
(550 km). The metastable low‐Fe eclogite could be a reason for the stagnant slabs within the upper range of
the transition zone. Eclogite would be responsible for density anomalies within 100–200 km in the upper
mantle of Asia.

Plain Language Summary Eclogite mainly consists of pyrope‐almandine‐grossular garnet and
sodium‐rich pyroxene (omphacite) and is a key component of the Earth's upper mantle and oceanic
crust. It plays an important role in the mantle convection. The lack of thermoelastic parameters of
eclogitic garnets and omphacites hampers accurate modeling of eclogite density at deep‐Earth
pressure‐temperature conditions. In this study, we obtained the thermoelastic parameters of natural
eclogitic garnets and omphacites and then modeled the densities of high‐Fe and low‐Fe eclogites in the
subducted oceanic crust and the normal upper mantle. In the upper mantle, eclogite enhances the slab
subduction into the transition zone; however, the presence of the metastable low‐Fe eclogite would
promote the slab stagnation within the upper range of the transition zone. Additionally, eclogite can
explain positive density anomalies at depths of 100–200 km of the upper mantle of Asia identified by
seismic observations.

1. Introduction

Eclogite is an important high‐pressure metamorphic rock and mainly forms from basalt or gabbro in the
subducting slab (Ringwood, 1982). Eclogite is mainly composed of garnet and omphacite and plays a key role
in mantle convection due to its relatively high density (Anderson, 2006; Aoki & Takahashi, 2004; Irifune
et al., 1986). In addition, the occurrences of eclogitic xenoliths in kimberlites and solid inclusions in
diamonds indicate the presence of eclogite in the mantle (e.g., Jacob, 2004; Taylor et al., 1996). Eclogite
may explain positive density anomalies in the upper mantle (Mooney & Kaban, 2010), for instance, the
widespread density anomalies of Asia at depths of 100–200 km beneath the Tarim basin, Himalayas, and
Siberian craton (Kaban, Khrepy, et al., 2016; Kaban, Stolk, et al., 2016).

Natural eclogitic omphacite and garnet are found as minerals with complex composition, which are
generally described as a solid solution of multiple pyroxene and garnet end‐members, respectively.
Omphacite is a clinopyroxene mineral with a composition intermediate between jadeite (Jd, NaAlSi2O6)
and diopside (Di, CaMgSi2O6) but often has other components of aegirine (Ae, NaFe3+Si2O6) and
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hedenbergite (Hd, CaFeSi2O6). It has monoclinic symmetry with C2/c or P2/n space group depending on
crystallization conditions, and the C2/c‐P2/n transition takes place at ~1000 K at 1 bar (Fleet et al., 1978).
Like other pyroxenes, the general crystal‐chemical formula of omphacite can be described as M2M1T2O6,
where M2 and M1 are two different octahedral sites, and T are tetrahedral sites. Commonly, M2 sites are
occupied by Ca2+ and Na+ cations, M1 sites are filled with Mg2+, Fe2+, Fe3+, and Al3+, while T sites are
occupied predominantly by Si4+, but can contain small quantities of Al3+.

Garnet has cubic symmetry with Ia3d space group, and numerous studies have described the garnet struc-
ture in great detail (e.g., Geiger, 2013). Its general crystal‐chemical formula is commonly represented as
X3Y2Z3O12, where Z are tetrahedral sites mostly occupied by Si4+; Y are octahedral cation sites, usually filled
with Al3+, Fe3+ and Cr3+; X cations are coordinated by eight oxygen atoms and can accommodate Mg2+,
Fe2+, Ca2+, Mn2+, and so on. Eclogites incorporated as xenoliths in eruptive rocks from global major
ultrahigh‐pressure metamorphic (UHPM) belts and kimberlites indicate that eclogitic garnets are mainly
composed of pyrope (Prp, Mg3Al2Si3O12), almandine (Alm, Fe3Al2Si3O12) and grossular (Grs,
Ca3Al2Si3O12) with very few other end‐member garnets like spessartine (Sps, Mn3Al2Si3O12) and andradite
(Adr, Ca3Fe

3+
2Si3O12; e.g., Kosman et al., 2016; Ren et al., 2017; Taylor et al., 1996; Wang, 1998; Wang et al.,

2009; Weber & Bucher, 2015). In addition, some eclogitic garnets generally contain ~1 wt.% of TiO2 (e.g.,
Stachel & Harris, 2008; Wang et al., 2009), which could be neglected in that case, although some studies
reported garnets with high Ti content (Wang et al., 2009), in which case the present model may not be
applicable.

Understanding the thermoelastic properties of eclogitic garnet and omphacite is important to model the
structure and fate of the subducted slab in the upper mantle (e.g., Bass & Anderson, 1984; Bass &
Parise, 2008; Duffy & Anderson, 1989; Frost, 2008). A number of studies have been conducted on the
thermoelastic properties of end‐member garnets (e.g., Arimoto et al., 2015; Fan, Xu, Ma, Wei, et al.,
2015; Gréaux et al., 2011; Hu et al., 2016; Wang et al., 1998; Zhang et al., 1999) and binary garnet
solutions including Prp‐Alm, Alm‐Sps, Grs‐Adr, and Prp‐Grs (Du et al., 2015; Fan et al., 2011; Fan, Xu,
Ma, Liu, et al., 2015; Fan et al., 2017; Huang & Chen, 2014; Milani et al., 2015). However, studies on
thermoelastic behaviors of ternary garnets at simultaneously high‐pressure (P)/high‐temperature (T)
conditions are limited. There has been only one experimental study on the thermoelastic properties of
Prp‐Alm‐Grs garnet (Prp68Alm24Grs5Sps1; Lu et al., 2013), and the grossular content was significantly
lower than that of common eclogitic garnets (typically, eclogitic garnets have Grs contents larger than
20 mol%; Stachel & Harris, 2008). Additionally, the mixing properties of Prp‐Alm‐Grs ternary garnets
are suggested to be nonideal (Ganguly et al., 1993; Geiger et al., 1987; Koziol & Newton, 1989), which
may prevent from using a monotonic relation to recalculate the elastic properties of the solid solution
from those of the end‐members. Therefore, previous studies have not fully constrained the thermoelastic
properties of eclogitic garnets.

Studies on the elastic properties omphacite at room T have been conducted extensively (e.g., Pandolfo et al.,
2012a; Pandolfo et al., 2012b; Pavese et al., 2001; Zhang et al., 2016), yet studies at high‐P/high‐T conditions
are limited (Nishihara et al., 2003; data collected to 10 GPa and 1000 K). Like other pyroxenes, omphacite
was expected to dissolve into garnet as the oceanic crust descends into the mantle (Akaogi & Akimoto,
1977). However, recent studies indicated that the pyroxene‐garnet reaction was inhibited under cold subduc-
tion zone conditions; thus, eclogitic omphacite and garnet are expected to be preserved in subducted oceanic
crust to transition zone depths (Nishi et al., 2008, 2009, 2013; Van Mierlo et al., 2013). Therefore, it is neces-
sary to explore the thermoelastic behaviors of eclogitic omphacite and garnet at high P‐T to pressures higher
than 10 GPa.

Here we reported the thermal equation of state (EoS) of natural high‐Fe and low‐Fe eclogitic garnets and
omphacites at high‐P/high‐T conditions to ~24 GPa and 700 K using synchrotron single‐crystal X‐ray
diffraction (XRD) coupled with an externally heated diamond anvil cell. Using the obtained thermoelastic
parameters of these eclogitic garnets and omphacites, we discussed the effects of composition on the elastic
properties of eclogitic garnet and omphacite. We also used these thermoelastic parameters to model the
density of eclogite in the normal upper mantle and oceanic crust. Finally, we applied these results to discuss
potential geophysical implications of eclogite for the dynamics of the subduction zone and the
upper mantle.
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2. Materials and Methods

Natural garnets and omphacites were collected from eclogite in Dabie‐Sulu UHPMbelt (supporting informa-
tion Text S1). The chemical compositions of garnets were obtained as Prp28Alm38Grs33Sps1 (low Fe) and
Prp14Alm62Grs19Adr3Sps2 (high Fe), while the compositions of two omphacites were Quad57Jd42Ae1 (low
Fe; Quad indicates Ca‐Mg‐Fe pyroxenes; Morimoto, 1988) and Quad53Jd27Ae20 (high Fe; Table S1).
Single‐crystal XRD experiments were carried out at experimental station 13‐BM‐C of the Advanced
Photon Source, Argonne National Laboratory (Fei et al., 2007; Kantor et al., 2012; Rivers et al., 2008;
Zhang et al., 2017) (supporting information Text S2). The GSE_ADA/RSV software (Dera et al., 2013) was
used to analyze the diffraction data (Figure S1). Data analyses of the single‐crystal XRD patterns indicate
that omphacite Quad57Jd42Ae1 has C2/c space group, while Quad53Jd27Ae20 has P2/n. The unit‐cell para-
meters of garnets and omphacites at various P–T conditions are given in Tables S2–S4, and there was no evi-
dence of phase transitions throughout the P–T range studied.

3. Results and Discussion
3.1. EoS of Eclogitic Garnets and Omphacites

The room‐T unit‐cell volumes of eclogitic garnets and omphacites undergo nonlinear decreases with no dis-
continuity in the compression curves up to the maximum pressure, as shown in Figures S2–S5. The pressure‐
volume (P‐V) data were fitted using a third‐order Birch‐Murnaghan EoS (BM3‐EoS) to obtain the elastic
parameters zero‐P unit‐cell volume (V0), isothermal bulk modulus (K0), and its pressure derivative (K′0),
using the program EoSFit7c (Angel et al., 2014; Gonzalez‐Platas et al., 2016). The results were compared
with those derived from the fittings by a second‐order Birch‐Murnaghan EoS (BM2‐EoS) and the Vinet
EoS (Vinet et al., 1986). The obtained results of these elastic parameters (Table S5) were assessed by various
strategies like the confidence ellipses of the coefficient between K0 and K′0 (Figures S6 and S8), the FE‐fE plot
(Figures S7 and S9), and the comparison between the refined and measured values of V0 (e.g., Angel, 2000;
Bass et al., 1981). Finally, we concluded that the BM3‐EoS is a reasonable choice for fitting the P‐V data of
Prp28Alm38Grs33Sps1, Prp14Alm62Grs19Adr3Sps2, and Quad53Jd27Ae20, while the P‐V data of
Quad57Jd42Ae1 can be reasonably described by the BM2‐EoS (supporting information Text S3).

The pressure‐volume‐temperature (P‐V‐T) data (Figure 1) were fitted using the high‐temperature BM3‐EoS
(HT‐BM3‐EoS) to obtain the thermoelastic parameters (Table 1) V0, KT0, K′T0, thermal expansion coefficient
(αT), and the temperature derivative of KT0 ((∂KT/∂T)P) (supporting information Text S4).

3.2. Comparisons With Previous Studies
3.2.1. Garnets
The elastic parameters K0 and K'0 of eclogitic garnets were compared with other aluminosilicate garnets
(Table S6). The K'0 values of eclogitic garnets (4.3(2) for Prp28Alm38Grs33Sps1 and 5.0(2) for
Prp14Alm62Grs19Adr3Sps2) are roughly within the ranges of the values of end‐member garnets (Prp: 4.4–
6.4, Alm: 4.2–5.8, and Grs: 5.0–5.2; e.g., Levien et al., 1979; Milani et al., 2015; Zhang et al., 1999; Zou
et al., 2012). However, the K0 values are smaller. With fixed K'0 at 4, the K0 values from XRD studies are
171–176, 178–186, and 166–176 GPa for Prp, Alm, and Grs, respectively. These are larger than those of the
eclogitic garnets (163.6(5) and 164.8(5) GPa for Prp28Alm38Grs33Sps1 and Prp14Alm62Grs19Adr3Sps2, respec-
tively). Additionally, the K0 values obtained by Brillouin scattering spectroscopy (BLS) and ultrasonic inter-
ferometry (UI; 169–174, 173, and 167–170 GPa for Prp, Alm, and Grs, respectively) are also larger than those
of the eclogitic garnets (Chen et al., 1999; Gwanmesia et al., 2006; Isaak et al., 1992; Jiang et al., 2004; Kono
et al., 2010; Leitner et al., 1980; O'Neill et al., 1991; Sinogeikin & Bass, 2000, 2002; Skinner, 1956; Soga, 1967;
Sumino & Nishizawa, 1978; Verma, 1960; Webb, 1989). Therefore, the eclogitic garnets have smaller K0

values than the end‐member garnets Prp, Alm, and Grs. As shown in Figure S10, the compressional curves
indicate that two eclogitic garnets are more compressible than the end‐member garnets.

The K0 values of the eclogitic garnets were also compared with those of other Prp‐Alm‐Grs garnets. Most
Prp‐Alm‐Grs garnets in previous studies (BLS and UI) contain Grs content less than 10 mol%, and the K0

values are 167–176 GPa and larger than those of our eclogitic garnets. It should be noted that the smaller
K0 value of Prp14Alm62Grs19Adr3Sps2 could result from the incorporation of Adr, as Adr has a smaller K0

value (157(2) GPa; Bass, 1986; Zhang et al., 1999) than Prp, Alm, and Grs. However, the addition of
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1 mol% Sps may not lower the K0 of Prp28Alm38Grs33Sps1, as the K0 value of Sps (172–179 GPa; Bass, 1989;
Babuška et al., 1978) is comparable to that of other end‐member garnets. Therefore, other reasons should be
considered (see the following paragraph).

The K0 values of Prp‐Alm, Alm‐Sps and Grs‐Adr solid solutions change linearly with the composition
(Huang & Chen, 2014; Fan, Xu, Ma, Liu, et al., 2015; Fan et al., 2017). However, the K0 values along the
Prp‐Grs solid solution show a nonlinear compositional dependence, and the garnets with intermediate com-
positions have smaller K0 values than the end‐members, due to the large positive excess volume (Du et al.,
2015). The incorporation of Grs into the Prp‐Alm solution may also result in excess volume for Prp‐Alm‐Grs
garnets (Koziol & Newton, 1989) and cause a smaller K0 value of Prp28Alm38Grs33Sps1 compared to those of
end‐member garnets. Previous studies obtained larger K0 values (167–176 GPa) for Prp‐Alm‐Grs garnets
with less than 3 mol% Grs (Table S6), which may indicate that this minor Grs content has little effects on
K0. Recently, a high‐pressure XRD study was conducted on a Prp‐Alm‐Grs garnet (Prp51Alm22Grs27) and
provided a K0 value of 166(2) GPa (Milani, 2015), which is larger than that of Prp28Alm38Grs33Sps1 (as indi-
cated by Figure S10) and more comparable to those values of low‐Grs Prp‐Alm‐Grs garnets. It seems that
increasing Grs content in Prp‐Alm‐Grs garnets decreases the K0 value. Along the Prp‐Alm solid solution,
the K0 value increases with increasing Alm content (Huang & Chen, 2014; Milani et al., 2015). However,

Table 1
Thermoelastic Parameters Derived From the Fitting of P‐V‐T Data to the HT‐BM3‐EoS

Composition V0 (Å
3) KT0 (GPa) KT′0 (∂KT/∂T)P (GPa/K) α0 (10

−5 K−1) α1 (10
−8 K−2)

Prp28Alm38Grs33Sps1 1570.2(2) 162(1) 4.3(2) −0.010(7) 3.5(4) 0.1(8)
Prp14Alm62Grs19Adr3Sps2 1564.9(1) 159.0(9) 5.0(2) −0.010(4) 1.7(2) 2.9(5)
Quad57Jd42Ae1 422.3(1) 123.6(5) 4fixed −0.011(5) 2.8(3) —

Quad53Jd27Ae20 426.0(2) 115(2) 4.9(4) −0.009(6) 3.4(4) —

Figure 1. Pressure‐volume‐temperature relations of eclogitic garnets ([a] Prp28Alm38Grs33Sps1 and [b]
Prp14Alm62Grs19Adr3Sps2) and omphacites ([c] Quad57Jd42Ae1 and [d] Quad53Jd27Ae20). Isothermal compression
curves are calculated by using the obtained thermoelastic parameters of this study.
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when Grs joins, the changes of K0 values of Prp‐Alm garnets with compo-
sition become complicated, which resembles the behavior of the Prp‐Grs
solution (Du et al., 2015).

The thermoelastic parameters α300K and (∂KT/∂T)P of eclogitic garnets were
also compared to those of previous HT‐BM‐EoS studies on end‐member
garnets Prp, Alm, and Grs (Table S7). Like the bulk modulus, the values
of (∂KT/∂T)P for both eclogitic garnets (−0.010(7) and −0.010(4) GPa/K
for Prp28Alm38Grs33Sps1 and Prp14Alm62Grs19Adr3Sps2, respectively) are
smaller than those of end‐member garnets (−0.018(2)−−0.043(14)
GPa/K). In this study, two eclogitic garnets have comparable values of
(∂KT/∂T)P, which may indicate that the compositional effect on the
(∂KT/∂T)P value of Prp‐Alm‐Grs garnet solutions is limited. For the
thermal expansion α300K, Prp28Alm38Grs33Sps1 (3.5(6) × 10−5 K−1) has a lar-
ger value than those of end‐member garnets Prp (2.6(3)‐3.0(3) × 10−5 K−1),
Alm (3.3(9) × 10−5 K−1), and Grs (2.8(2) × 10−5 K−1). However, the α300K
value of Prp14Alm62Grs19Adr3Sps2 (2.6(4) × 10−5 K−1) is more compar-
able to that of the end‐member garnets and smaller than that of
Prp28Alm38Grs33Sps1. Therefore, for Prp‐Alm‐Grs solution, the composi-
tional effects on the thermal expansion should be considered, and the
increasing Alm content may lower the thermal expansion.
3.2.2. Omphacites
The K0 and K'0 values of two eclogitic omphacites were compared to pre-
vious studies on omphacites and relevant end‐member clinopyroxenes
including Di, Jd, Hd, and Ae (Table S8). In contrast to garnets, very few
of these results are from BLS or UI experiments (Bhagat et al., 1992;
John & Weidner, 1988; Kandelin & Weidner, 1988; Li & Neuville, 2010;
Sang & Bass, 2014; Stixrude & Lithgow‐Bertelloni, 2011; Tribaudino

et al., 2008), and most are obtained by the XRD method (e.g., Gavrilenko et al., 2010; Levien & Prewitt,
1981; McCarthy, Downs, Thompsom, & Redhammer, 2008; Nestola et al., 2006; Posner et al., 2014;
Thompson & Downs, 2008; Xu et al., 2017; Zhang et al., 1997; Zhao et al., 1997, 1998) (Table S8).

The K'0 values are within the range of end‐member clinopyroxenes (K'0 = 3.2–6.2; Table S8). With fixed
K'0 = 4, the K0 values of Quad57Jd42Ae1 (123.6(5) GPa) and Quad53Jd27Ae20 (120.3(9) GPa) are larger than
those of Di (110–117 GPa), Hd (117 GPa), and Ae (113–120 GPa), but smaller than those of Jd (127–134 GPa;
Table S8 and Figure S11).

Additionally, the K0 values of two eclogitic omphacites were also compared to those of previous EoS studies on
omphacites (Figures S11 and S12), also with fixed K'0 = 4. As shown in Figure S11, the K0 value of omphacite
increases with the Jd content as proposed by Pandolfo et al. (2012b), as other end‐member clinopyroxenes like
Di, Hd, and Ae have comparable K0 values that are significantly smaller than that of Jd (Table S8). The notably
large K0 of Nishihara et al. (2003; Quad72Jd28) may result from its high contents (~13 mol%) of CaAl2SiO6, as
the effective ionic radius of six‐coordinated Al3+ (0.535 Å) is smaller than that of Mg2+ (0.720 Å; Shannon,
1976) and smaller cations cause lower compressibilities for clinopyroxenes (e.g., McCarthy, Downs, &
Thompson, 2008). Pavese et al. (2001) obtained a smaller K0 value of Quad49Jd45Ae6 that might suffer from
the presence of non‐hydrostatic conditions at high pressures, as they employed nitrogen as the pressure‐
transmitting medium (the presence of non‐hydrostatic stress occurs at ~3 GPa; Angel et al., 2007). The
discrepancy of K0 values between Zhang et al. (2016; Quad52Jd44Ae4) and this study (Quad57Jd42Ae1) is
likely due to the different experimental pressure ranges; the maximum pressure is much higher (47 GPa)
in the former.

Table S9 summarizes the thermoelastic parameters α300K and (∂KT/∂T)P of Di, Jd, and omphacites, which
are derived from the fitting of the P‐V‐T data to the HT‐BM‐EoS. The α300K value of Quad57Jd42Ae1
(2.8(3) × 10−5 K−1) is comparable to those of Di (2.9(1) × 10−5 K−1), Jd (2.6(3) × 10−5 K−1), and
Quad72Jd28 (2.7(3) × 10−5 K−1) but smaller than that of Quad53Jd27Ae20 (3.4(4) × 10−5 K−1). Therefore,
increasing Ae content may enhance the thermal expansion of omphacite, while there may be little effects

Figure 2. Density for eclogite along a geotherm (Eberle et al., 2002) of the
subducting oceanic crust and the seismic model PREM (Dziewonski &
Anderson, 1981) is also shown. The blue dotted line represents the density of
untransformed eclogite from Nishi et al. (2009). The blue dashed line
represents the density of eclogite from Nishi et al. (2009) that involves the
formation of majorite by absorption of clinopyroxene. The red dashed and
solid lines represent the metastable high‐Fe and low‐Fe eclogite, respec-
tively. High‐Fe eclogite: mineral assemblage of 20 vol%
Prp14Alm62Grs19Adr3Sps2, 75 vol% Quad53Jd27Ae20, and 5 vol% coesite/
stishovite; low‐Fe eclogite: mineral assemblage of 20 vol%
Prp28Alm38Grs33Sps1, 75 vol% Quad57Jd42Ae1, and 5 vol% coesite/
stishovite.
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from the variations of other components like Jd and Di. In comparison
with the thermal expansion, the compositional effects on the (∂KT/∂T)P
may be smaller. In this study, the (∂KT/∂T)P values of Quad57Jd42Ae1
(−0.011(5) GPa/K) and Quad53Jd27Ae20 (−0.009(6) GPa/K) are compar-
able. These values are also comparable to that of Jd (−0.014(5) GPa/K)
but smaller than those of Di (−0.021(4) GPa/K) and Quad72Jd28
(−0.026(5) GPa/K).

4. Geophysical Implications

Eclogite has been proposed as the driving force for subduction after the
basalt‐eclogite transition within the oceanic crust (e.g., Ringwood,
1982). In addition, eclogite in the upper mantle has been generally inter-
preted as remnants of ancient subduction (e.g., Jacob, 2004) and consid-
ered as a cause of some density anomalies within 100–200 km (Kaban,
Khrepy, et al., 2016; Kaban, Stolk, et al., 2016). Therefore, to better under-
stand the role of eclogite in both subduction and normal upper mantle, we
modeled the density of eclogite along the geotherms of the oceanic crust
(Eberle et al., 2002) and the normal upper mantle (Katsura et al., 2010).
During the calculation, we used the HT‐BM3‐EoS and the obtained ther-
moelastic parameters of eclogitic garnets and omphacites. In this model,
the eclogite consists of 20 vol% garnet, 75 vol% omphacite, and 5 vol% coe-
site (Nishi et al., 2009), and the densities of eclogite assemblages are esti-
mated by using a Voigt‐Reuss‐Hill average (Hill, 1952). This model
assumes that the eclogitic garnets and omphacites metastably survive to
550 km, while the coesite‐stishovite transition occurs at ~9 GPa (Nishi
et al., 2009). The used thermoelastic parameters of eclogitic garnets and
omphacites (this study) and coesite and stishovite are shown in Table S10.

4.1. Eclogite and the Slab Subduction

The densities of high‐Fe (Prp14Alm62Grs19Adr3Sps2 + Quad53Jd27Ae20 +
coesite) and low‐Fe (Prp28Alm38Grs33Sps1 + Quad57Jd42Ae1 + coesite)
eclogites in the subducted oceanic crust are shown in Figure 2. The den-
sity of metastable eclogite with Mid‐ocean ridge basalt (MORB) composi-
tion fromNishi et al. (2009) is also shown in Figure 2, which is higher than
that of the low‐Fe eclogite by 0.4% at ~300 km but lower than that the
high‐Fe eclogite by 2.3% at ~300 km. Compared with the eclogite invol-
ving the formation of majorite (Figure 2), these metastable eclogites have
lower densities at depths of 300–550 km.

Density is an important factor controlling the sinking or stagnation of the
slabs (Agrusta et al., 2014). As shown in Figure 2, in the upper mantle, the

metastable eclogites are denser than the Preliminary reference Earth model (PREM), indicating the higher
density of eclogite provides a plunging force to the slab. The high‐Fe eclogite is denser than the PREMman-
tle up to ~520 km, which indicates that the presence of high‐Fe eclogite would facilitate the slab to sink into
the middle range of the transition zone. However, the low‐Fe eclogite has a lower density than the PREM
after entering the transition zone, indicating that the presence of low‐Fe eclogite would enhance the slab
stagnation within the upper range of the transition zone. Indeed, seismic observations have demonstrated
some stagnant slabs within the upper range of the transition zone, which are located beneath the
Peruvian continental arc, the eastern Java arc, the southern Kurile arc, and so on (Fukao et al., 2001;
Fukao & Obayashi, 2013).

4.2. Eclogite and the Positive Density Anomalies in the Upper Mantle

Recently, some positive density anomalies at depths of 100–200 km of the upper mantle of Asia (beneath the
Tarim, Himalayas, South China craton, South Urals, etc.) were identified by geophysical observations

Figure 3. (a) Density profiles of eclogite assemblages along a normal mantle
geotherm (Katsura et al., 2010). The seismic model PREM is from
Dziewonski and Anderson (1981), and the density profile of the pyrolite is
obtained from Cammarano et al. (2003). (b) Density difference between
eclogite and pyrolite. The colored region indicates the density anomalies in
the upper mantle of Asia at depths of 100–200 km. High‐Fe eclogite: mineral
assemblage of 20 vol% Prp14Alm62Grs19Adr3Sps2, 75 vol% Quad53Jd27Ae20,
and 5 vol% coesite; low‐Fe eclogite: mineral assemblage of 20 vol%
Prp28Alm38Grs33Sps1, 75 vol% Quad57Jd42Ae1, and 5 vol% coesite.
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(Kaban, Khrepy, et al., 2016; Kaban, Stolk, et al., 2016). These anomalies have values between 0.04 and
0.08 g/cm3 and are explained by the presence of eclogite bodies (Kaban, Khrepy, et al., 2016; Kaban,
Stolk, et al., 2016). To verify the reasonability, the densities of the high‐Fe and low‐Fe eclogites at depths
of 100–200 km along a normal mantle geotherm were calculated. As shown in Figure 3a, the densities of
both eclogites are compared with those of the pyrolite (Cammarano et al., 2003) that is thought to be a repre-
sentative rock of the upper mantle.

The high‐Fe eclogite is denser than the pyrolite by ~0.10 g/cm3, while the density difference between low‐Fe
eclogite and pyrolite is ~0.04 g/cm3 (Figure 3b). Therefore, the low‐Fe eclogite can explain the density
anomalies beneath the South Urals and Siberian craton where the anomalies are 0.04–0.06 g/cm3.
However, density anomalies with larger values like those beneath the Tarim and Himalayas (larger than
0.06 g/cm3) may result from eclogites with higher Fe contents. Actually, mantle eclogite originated from
the subduction can be modified by partial melting and reaction with the surrounding peridotite to form
low‐Fe eclogite (e.g., Smit et al., 2014; Yaxley & Green, 1998). Therefore, based on this study, the density
anomalies with different values in the upper mantle of Asia can be explained by eclogites with various
Fe contents.

5. Conclusions

The thermoelastic parameters of eclogitic garnets (low‐Fe: Prp28Alm38Grs33Sps1 and high‐Fe:
Prp14Alm62Grs19Adr3Sps2) and omphacites (low‐Fe: Quad57Jd42Ae1 and High‐Fe: Quad53Jd27Ae20) were
obtained by fitting the P‐V‐T data to the HT‐BM‐EoS. The results were compared with those of previous stu-
dies. The eclogitic garnets have smaller K0 values than end‐member garnets Prp, Alm, and Grs, which may
result from the excess volume induced by the incorporation of Grs. Unlike the Prp‐Alm solid solution, which
hasK0 values increase with increasing Alm content, the compositional dependence ofK0 values for Prp‐Alm‐

Grs garnets is complicated. For Prp‐Alm‐Grs solutions, increasing Alm content may lower the thermal
expansion. The K0 values of omphacite generally increase with increasing Jd content. On the contrary,
increasing Ae content may enhance the thermal expansion. The thermoelastic parameters were used to
model the densities of eclogite at P‐T conditions of the subducted oceanic crust and the normal upper man-
tle. Eclogite would contribute to the driving force for the slab subduction to the transition zone. However,
the presence of metastable low‐Fe eclogite may contribute to the slab stagnation within the upper range
of the transition zone. Additionally, eclogites can explain the density anomalies at depths of 100–200 km
in the upper mantle of Asia.
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