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ABSTRACT: Organic−inorganic halide perovskites possess
unique electronic configurations and high structural tunability,
rendering them promising for photovoltaic and optoelectronic
applications. Despite significant progress in optimizing the
structural characteristics of the organic cations and inorganic
framework, the role of organic−inorganic interactions in
determining the structural and optical properties has long been
underappreciated and remains unclear. Here, by employing
pressure tuning, we realize continuous regulation of organic−
inorganic interactions in a lead halide perovskite, MHyPbBr3
(MHy+ = methylhydrazinium, CH3NH2NH2

+). Compression
enhances the organic−inorganic interactions by strengthening
the Pb−N coordinate bonding and N−H···Br hydrogen bonding,
which results in a higher structural distortion in the inorganic framework. Consequently, the second-harmonic-generation (SHG)
intensity experiences an 18-fold increase at 1.5 GPa, and the order−disorder phase transition temperature of MHyPbBr3 increases
from 408 K under ambient pressure to 454 K at the industrially achievable level of 0.5 GPa. Further compression triggers a sudden
non-centrosymmetric to centrosymmetric phase transition, accompanied by an anomalous bandgap increase by 0.44 eV, which
stands as the largest boost in all known halide perovskites. Our findings shed light on the intricate correlations among organic−
inorganic interactions, octahedral distortion, and SHG properties and, more broadly, provide valuable insights into structural design
and property optimization through cation engineering of halide perovskites.

■ INTRODUCTION
Organic−inorganic halide perovskites, possessing substantial
tunability in compositions and structures, have emerged as
exceptionally promising candidates for optical and optoelec-
tronic applications.1−4 They have a chemical formula of ABX3
where A represents an organic cation, B denotes a divalent
cation, and X signifies a halogen. The electronic structures and
physical properties of halide perovskites are dominated by the
characteristics of the inorganic [BX6]4− octahedral framework.5

Thus far, extensive efforts have been made on the composi-
tional tuning of B- and X-sites for materials optimization, such
as achieving tunable bandgap across the entire visible spectral
region.6−9 However, the contributions of A-site cations and
their interactions with the inorganic framework to the
electronic structures and optical properties have long been
underappreciated and remain unclear,10,11 which thus leaves a
great space for materials design and properties improvement
through A-site cation engineering.
The incorporation of an oversized MHy+ (methylhydrazi-

nium, CH3NH2NH2
+) has led to the development of an exotic

3D lead halide perovskite, MHyPbBr3 (tolerance factor =

1.03), characterized by strong and anomalous organic−
inorganic interactions.12,13 Particularly, the Pb−N coordinate
bonding14 and N−H···Br hydrogen bonding give ordered
MHy+ cations, resulting in significant octahedral distortion
within the Pb−Br inorganic framework.15,16 Consequently,
MHyPbBr3 exhibits a range of unusual properties inducing
strong second-harmonic-generation (SHG) activity, switchable
dielectric behavior, thermochromism, and a high order−
disorder transition temperature (408 K at ambient pressure).12

The relatively strong organic−inorganic interactions in
MHyPbBr3 distinguish it from other lead bromide perovskites,
offering exceptional opportunities to understand the role of
these interactions in the structural transition and the resulting
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optical properties. Achieving this goal requires efficient tuning
and diagnostic methods that enable harnessing and under-
standing of the organic−inorganic interactions in these hybrid
halide perovskites.
Pressure, as a thermodynamic parameter, allows for the

continuous modification of the lattice and electronic structures
of materials without altering their chemical compositions.17−22

Notably, the distinct pressure responses of the organic and
inorganic building blocks in halide perovskites provide an
avenue for manipulating the organic−inorganic interac-
tions.23−26 In this work, by introducing pressure to modulate
the Pb−N coordinate bonding and N−H···Br hydrogen
bonding in MHyPbBr3, we achieve the continuous modulation
of organic−inorganic interactions, which allows us to elucidate
their contributions to the variations in the structure and
properties of this material. Specifically, we observe an 18-fold
enhancement in the SHG intensity at 1.5 GPa, along with a
noteworthy increase in the order−disorder phase transition
temperature from 408 K at ambient pressure to 454 K at 0.5
GPa. Furthermore, variations in the structural and physical
properties have been comprehensively investigated by high-
pressure diagnostics and theoretical calculations, demonstrat-
ing the direct link between the organic−inorganic interactions
and the physical properties of hybrid halide perovskites.

■ RESULTS AND DISCUSSION
MHyPbBr3 adopts a monoclinic structure with space group
P21 (phase β) and lattice constants of a = 5.97010(10) Å, b =
11.8291(2) Å, c = 11.8582(2) Å, and β = 92.361(2)° at
ambient conditions. In contrast to the randomly oriented MA+

cations in MAPbBr3, the MHy+ cations in MHyPbBr3 exhibit
an ordered arrangement (Figure 1a). The specific orientation
of MHy+ cations is attributed to the strong interaction between
the organic A-site cations and inorganic frameworks through
Pb−N coordinate bonds and N−H···Br hydrogen bonds (as
shown in Figure 1b).15 The inorganic framework of
MHyPbBr3, as depicted in the middle panel of Figure 1a, is
composed of two layers of octahedra stacked alternately along
the c-axis. These octahedra include less distorted PbBr6[I]
octahedra shown in gray and highly distorted PbBr6[II]
octahedra shown in purple. As a result, the MHyPbBr3 exhibits
strong structural distortion, high second-harmonic intensity
(1/5 KH2PO4),

12 and an unusually large bandgap, all of which
are rarely observed in other Pb−Br perovskites (Figure S1).
Furthermore, MHyPbBr3 possesses an order−disorder phase
transition when the temperature increased to 408 K, above
which the organic−inorganic interactions were disrupted,
forming a centrosymmetric structure with the Pm3̅m space
group (phase α, left panel of Figure 1a).

Figure 1. Structural evolution of MHyPbBr3 under high pressures. (a) Crystal structures at 430 K (phase α, left panel),12 ambient conditions
(phase β, middle panel), and 2.5 GPa (phase γ, right panel). Gray, purple, and yellow colors represent low-distorted PbBr6[I], high-distorted
PbBr6[II], and medium-distorted PbBr6[III] octahedra, respectively. H atoms are hidden for clarity. (b) Schematic illustration of organic−inorganic
interactions in MHyPbBr3, which includes Pb−N coordinate bonds and N−H···Br hydrogen bonds. (c) Normalized lattice constants as a function
of pressure. (d) Octahedral distortion index Di as a function of pressure. (e) Pressure-dependent Pb−N bond length in the high-distorted PbBr6[II]
octahedron. Average length of the Pb−Br bond is shown for comparison. Left and middle panels of (a) are reproduced from Chem. Mater. 2020, 32
(4), 1667. Copyright © 2022 American Chemical Society.
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In situ single-crystal X-ray diffraction was carried out to
investigate the structural evolution of MHyPbBr3 under high
pressures (Figure S2). Figure 1c and Table S1 show the
variations of lattice constants with pressure, revealing a nearly
isotropic compressibility behavior. To quantify the PbBr6
octahedra distortion of MHyPbBr3, we introduce the Baur
distortion index Di:

D
b b

b
1
6i

j

j

1

6

=
| |

=

i
k
jjjjjj

y
{
zzzzzz

where bj and b̅ are the individual and average of Pb−Br bond
length, respectively. An ideal octahedron corresponds to Di =
0, and a higher value indicates a larger octahedral distortion.27

As shown in Figure 1d, the Di values for the less distorted
PbBr6[I] octahedra and highly distorted PbBr6[II] octahedra
are 0.69% and 2.62% at ambient pressure, respectively. Upon
compression, the Di values for both types of octahedra increase
up to 2.1 GPa, indicating an enhanced structural distortion. We
further examined the coordinate bond distance between the Pb
atom in the distorted PbBr6[II] octahedron and the N atoms in
the two MHy+ cations nearby, as shown in Figure 1e. Upon
compression, the Pb−N1 and Pb−N2 distances gradually
reduce from 2.92 and 3.04 Å under ambient conditions to 2.81
and 2.86 Å at 2.1 GPa, respectively. These distances are shorter
than the Pb−Br bond distance, indicating a strengthened Pb−
N interaction.
When the pressure exceeded 2.2 GPa, a phase transition

occurred in MHyPbBr3. By analyzing the single-crystal X-ray
diffraction (XRD) results (Figure S3), the high-pressure phase
(phase γ) of MHyPbBr3 was identified as a centrosymmetric
orthorhombic structure with space group Pbca and lattice
constants of a = 11.2858(6) Å, b = 11.3973(5) Å, and c =
11.4376(17) Å. More detailed crystallographic information can
be found in Table S2 of the Supporting Information. As
illustrated in the right panel of Figure 1a, the high-pressure
structure (phase γ) of MHyPbBr3 consists of only one type of
octahedron, which exhibits a medium level of distortion with
Di = 2.21% (Figure 1d). Note that the distance of the Pb−N
coordinate bond increases to 2.86 Å at 2.5 GPa, which gives
weaker organic−inorganic interactions and less octahedral
distortion in phase γ.

To explore the evolution of local structures and organic−
inorganic interactions in MHyPbBr3, we conducted in situ
Raman spectroscopy measurements, as shown in Figure 2.
Generally, the low-wavenumber modes (below 200 cm−1) are
associated with the inorganic framework, while the modes
above 280 cm−1 reflect the internal vibrations related to the
MHy+ cation.12,28 At ambient conditions, the MHy+ cation in
MHyPbBr3 is ordered, giving rise to clear and well-defined
Raman peaks. Upon compression, most Raman peaks shift
toward higher wavenumbers due to the lattice contraction.
However, we note that some peaks show an opposite trend.
Particularly, the peak at 22.4 cm−1, which corresponds to the
Pb−Br−Pb scissoring (Figure 2), exhibits a redshift and
becomes sharper and stronger with increasing pressure (Figure
S4). Such an anomaly is due to the enhanced Pb−N
coordinate bonding.29 The redshift can also be observed in
some other modes, at the wavenumbers of 846.9, 1561.5,
3216.5, and 3268 cm−1, which correspond to −NH2 rocking,
−NH2 scissoring, N−H stretching, and N−H stretching
vibrations, respectively.28,30 These unusual redshifts indicate
the enhanced N−H···Br hydrogen bonding between MHy+
and Br−.31 Such enhanced hydrogen bonding together with
stronger Pb−N coordinate bonding increases the organic−
inorganic interactions in MHyPbBr3.
The occurrence of the phase transition is also clearly

reflected in the Raman spectra, as evidenced by the significant
changes in the modes associated with the inorganic framework.
Note that most of the Raman peaks originating from the
organic cations remain well-defined but show variation, which
indicates an ordered nature and altered configuration of MHy+
after the phase transition. At high pressures, the Raman peaks
influenced by hydrogen bonding persist and continue to shift
toward lower wavenumbers (Figure S4c), indicating the
persistence of these bondings after the phase transition.
The strong organic−inorganic interaction in MHyPbBr3

leads to considerable distortion of the inorganic framework,
leading to a larger bandgap (2.58 eV) compared to MAPbBr3
(2.27 eV) and FAPbBr3 (2.25 eV). To explore the band
structure evolution under high pressure, in situ UV−vis
absorption spectra were collected. Upon compression, the
absorption edge gradually redshifts and then undergoes a
sudden blueshift at 2.2 GPa (Figure 3a). The pressure-
dependent bandgap of MHyPbBr3 is shown in Figure 3b (left

Figure 2. Raman spectra of MHyPbBr3 at different pressures. Raman peaks exhibiting a redshift are marked in red, indicating the enhancement of
Pb−N coordinate bonding and N−H···Br hydrogen bonding under pressure. Inset illustrates the corresponding vibration modes.
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axis), and the relative changes of energy (ΔE) for APbBr3 (A =
Cs, MA, FA, and MHy) are displayed in the right axis. The
corresponding optical absorption data of APbBr3 are shown in
Figure S5. As is well known, the bandgap of 3D halide
perovskites is governed by the Pb−Br bond length as well as
the Pb−Br octahedron distortion and tilting.32 The decrease in
bond length causes a reduction in the bandgap, whereas the
distortion and tilting of the octahedra have the opposite effect.
Upon compression, the bandgap of all the APbBr3 perovskites
initially decreases due to the shortening of the Pb−Br bond
length, then exhibits an increase at the point of phase transition
due to the tilting of the octahedra.33,34 The photoluminescence
(PL) spectra, displayed in Figure S6, exhibit a consistent
redshift of the PL peak during compression before the phase
transition, aligning with the observed variations in the
bandgap.
Note that the phase-transition-induced increase in the

bandgap of MHyPbBr3 is 0.44 eV, which is the most dramatic
and abrupt change among all APbBr3 perovskites (Figure 3b).
This is because the strong organic−inorganic interaction in
MHyPbBr3 inhibits the tilting of the Pb−Br octahedron
through the steric hindrance effect.35 Therefore, when the
lattice stress surpasses a certain threshold, the original structure
collapses, giving rise to a sudden octahedral tilting (as shown
in Figure S7) accompanied by a large increase in the bandgap.
Furthermore, the pressure-induced phase transition of
MHyPbBr3 is visually evident in the optical images, where
the crystal color changes abruptly from yellow to transparent
(Figure 3c and Figure S8).
Theoretically calculated electronic structures of MHyPbBr3

at various pressures are presented in Figure 3d,e and Figure S9,
where phase β and phase γ exhibit a direct and indirect
bandgap nature, respectively. The states near the conduction
band minimum (CBM) mainly consist of Pb-5p orbitals, and
the valence band maximum (VBM) consists of Pb-6s and Br-

4p antibonding orbitals. Pressure-induced shortening in the
Pb−Br bond length increases the orbital overlap between Pb-
6s and Br-4p, raising the VBM and thereby narrowing the
bandgap. On the other hand, the orbital overlap is reduced
after the phase transition due to the increased octahedra tilting,
resulting in a larger bandgap in phase γ. Interestingly, we find a
weak contribution of Pb-6p orbitals in the VBM, which comes
from the lone-pair electrons of the N-2s orbital through Pb−N
coordinate bond.36 By integrating the density of states around
the VBM at different pressures, we observe an increase in the
contribution of Pb-6p orbitals in the VBM of MHyPbBr3
(Figure S10), confirming the enhancement of Pb−N
coordinate bonding upon compression. Additionally, the
calculated pressure-dependent bandgaps are shown in Figure
S11, which agrees well with the experimental results.
The pronounced structural polarization resulting from the

strong organic−inorganic interactions in MHyPbBr3 gives a
second-order nonlinear optical effect, where the SHG intensity
reaches the 1/5 value of KH2PO4 (KDP) at ambient
conditions. The pressure-modulated organic−inorganic inter-
actions and enhanced structural distortion offer an opportunity
to further enhance the SHG response. As shown in Figure 4a,
the SHG response of MHyPbBr3 is significantly enhanced,
reaching the maximum at around 1.5 GPa, where an 18 times
gain is achieved. When the pressure exceeds 2.2 GPa, the SHG
response suddenly disappears, confirming the pressure-induced
phase transition from non-centrosymmetric to centrosymmet-
ric (Figure 1a). To further analyze the relationship between
crystal symmetry and SHG properties, we performed the
polarization-resolved SHG measurements at various pressures
in a vertical configuration (Figure 4b and Figure S12). Below
the pressure corresponding to phase transition (∼2 GPa),
MHyPbBr3 exhibits a consistent four-lobe pattern, indicating
the persistence of the same crystallographic space group in
MHyPbBr3 before the phase transition.37 This suggests that

Figure 3. Optical and electronic properties of MHyPbBr3 at different pressures. (a) Absorption spectra at different pressures. (b) The optical
bandgap and the relative change of energy (ΔE) as a function of pressure. ΔE = Ep − E0, where the Ep and E0 are the bandgap at specific pressure
and ambient conditions, respectively. The ΔE values of CsPbBr3, MAPbBr3, and FAPbBr3 are shown for comparison. (c) Optical images of
MHyPbBr3 at different pressures, where a sudden change of color from yellow to transparent is found at 2.2 GPa. The calculated electronic
structures of MHyPbBr3 at (d) 0.0 and (e) 2.5 GPa.
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the SHG enhancement in MHyPbBr3 is primarily attributed to
the enhanced structural distortion rather than a change in
crystal symmetry.38

As aforementioned, the organic−inorganic interactions in
MHyPbBr3 could stabilize the polarized structure (phase β) up
to 408 K. Above this temperature, the orientation of the MHy+
cation becomes thermally random, leading to the disruption of
the orderly organic−inorganic interaction in MHyPbBr3
(Figure 1a). Consequently, the structure transforms into a
typical nonpolarized Pm3̅m perovskite structure. We con-
ducted temperature-dependent SHG measurements of
MHyPbBr3 at different pressures. As shown in Figure 4c, the
critical temperature Tc gradually increases from 408 K at
ambient pressure to 454 K at 0.5 GPa. The temperature−
pressure phase diagram, shown in Figure 4d, illustrates that
MHyPbBr3 exhibits a nonpolarized Pm3̅m space group at the
low-pressure/high-temperature region, whereas it crystallizes
in a polarized P21 space group otherwise. The enhanced
stability of the polarized structure in MHyPbBr3 is mainly due
to the strengthening of the organic−inorganic interactions
under high pressure. Therefore, a higher temperature is
required to overcome the energy associated with Pb−N
coordinate bonding and N−H···Br hydrogen bonding,
inducing randomization of the MHy+ cations.

■ CONCLUSION
We have achieved substantial enhancement in the structural
distortion and SHG response of MHyPbBr3 by regulating the
organic−inorganic interactions through high pressure. Com-
pression induces strengthening of Pb−N coordinate bonding
and N−H···Br hydrogen bonding in MHyPbBr3 due primarily
to the steric hindrance effect from the oversized MHy+ cations.
Notably, the SHG intensity of MHyPbBr3 achieves a
remarkable enhancement by 18-fold at 1.5 GPa and an
increase in the order−disorder phase transition temperature

from 408 K under ambient conditions to 454 K at the
industrially achievable level of 0.5 GPa. Combined exper-
imental data and calculation results demonstrate the stronger
organic−inorganic interactions, which can be realized by
introducing Pb−N coordinate bonding and increasing hydro-
gen bonding, leading to higher structural distortion and
improved nonlinear optical properties. Our findings would lead
to further studies on A-cation engineering and the under-
standing of organic−inorganic interactions with the polar-
ization-related properties like ferroelectricity, piezoelectricity,
and circular dichroism.
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Figure 4. Pressure-dependent SHG property of MHyPbBr3. (a) SHG intensity as a function of pressure at room temperature. (b) SHG polarization
polar plots at selected pressures. (c) SHG intensity as a function of temperature at different pressures, where order−disorder phase transition
temperature increases upon compression. (d) Temperature−pressure phase diagram of MHyPbBr3, showing the nonpolarized Pm3̅m space group
under low-pressure and high-temperature conditions and the polarized P21 space group otherwise.
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