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Abstract: Clinopyroxene (Cpx) is commonly believed to be the best structural water (hydrogen)
carrier among all major upper mantle nominally anhydrous minerals (NAMs). In this study, we have
measured the single-crystal elastic properties of a Cpx, a natural omphacite with ~710 ppm water at
ambient pressure (P) and temperature (T) conditions. Utilizing the single-crystal X-ray diffraction
(XRD) and electron microprobe data, the unit cell parameters and density were determined as
a = 9.603(9) Å, b = 8.774(3) Å, c = 5.250(2) Å, β = 106.76(5)o, V = 255.1(4) Å3, and % = 3.340(6) g/cm3.
We performed Brillouin spectroscopy experiments on four single crystals along a total of 52 different
crystallographic directions. The best-fit single-crystal elastic moduli (Cijs), bulk and shear moduli
were determined as: C11 = 245(1) GPa, C22 = 210(2) GPa, C33 = 249.6(9) GPa, C44 = 75.7(9) GPa,
C55 = 71.2(5) GPa, C66 = 76(1) GPa, C12 = 85(2) GPa, C13 = 70(1) GPa, C23 = 66(2) GPa, C15 = 8.0(6)
GPa, C25 = 6(1) GPa, C35 = 34.7(6) GPa, and C46 = 8.7(7) GPa, KS0 = 125(3) GPa, and G0 = 75(2) GPa,
respectively. Compared with the anticipated elastic properties of an anhydrous omphacite with the
same chemical composition, our results indicate that the incorporation of ~710 ppm structural water
has no resolvable effect on the aggregate elastic properties of omphacite, although small differences
(up to ~9 GPa) were observed in C13, C25, C44, and C66.

Keywords: elasticity; omphacite; clinopyroxene; eclogite; structural water; nominally hydrous
minerals; seismic velocities

1. Introduction

Quantifying the water content in the Earth’s upper mantle through seismic observations requires
the knowledge of how structural water content affects the elastic properties for various nominally
anhydrous minerals (NAMs) [1,2]. Whether the upper mantle is universally or locally hydrated is still
controversial [3,4], although the water carried down by the subducting slabs is considered a major
source of the water in the Earth’s interior [5–8]. Subduction is one of the main driving forces of
the mantle convection and is responsible for many geological processes in the Earth’s interior [9,10].
The basaltic slab crust transforms into eclogite at depths greater than ~100 km and it remains denser
than the ambient mantle down to ~600 km depths [11]. As the solid solution between diopside (Di,
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CaMgSi2O6) and jadeite (Jd, NaAlSi2O6), omphacite is the major mineral phase that constitutes up to
80 vol% of eclogite. The subducting slabs carry the surface water into the Earth’s interior primarily in
the form of structural water; thus, it is important to know how much structural water can be stored
in the major mineral phases in the subducting slabs. The maximum solubility of H2O—depending
on temperature (T) and pressure (P)—in pure Di ranges from 121–568 ppm, but in aluminous Di,
this value increases up to 2500 ppm [12]. Natural Clinopyroxene (Cpx) samples can host as high as
2000 ppm water in their crystal structures [12,13], much higher than all other major upper mantle
minerals such as olivine, orthopyroxene, or garnet. As a type of Cpx, which can retain the highest
amount of water in its structure among all upper mantle NAMs, omphacite is likely both an important
water carrier as well as a potential water reservoir in the Earth’s interior [5,6,14–17].

Structural water (hydrogen) is incorporated into the Cpx crystal structure through cation vacancies
primarily on the M2 site [13,18]. Previous experimental studies on olivine, another NAM commonly
found in the ambient upper mantle, have suggested that the incorporation of hydrogen into the
NAMs decreases both the P-wave and S-wave velocities (Vp and Vs) [19–23]. This softening effect
of structural water can potentially affect our understanding of the upper mantle seismic structures
and mineralogical composition, as well as the total water budget of the Earth’s interior [6,21–25].
In addition, there is a growing interest in the mineral physics and petrology communities in using
various minerals’ thermoelastic parameters to establish new elastic geobarometers for interpreting
various deep geological processes that happened in the past [26,27]. Unfortunately, most previous
investigations are restricted to hydrous olivine and its high-P polymorphs [21–23,28–30], and no
experimental sound velocity measurements have previously been made for hydrous Cpx. Therefore,
in this study, we performed single-crystal Brillouin spectroscopy experiments on a hydrous omphacite
sample with ~710 ppm water in order to study the possible structural water effect on the single-crystal
elastic properties of omphacite.

2. Materials and Methods

The omphacite crystals were hand-selected from the natural omphacite sample SBB-46 from the
South African Bobbejaan mine. Four different crystals were double-side polished to less than 30 µm
thickness. Under optical examination, all crystals were inclusion- and scratch-free. The chemical
composition (Na0.396K.005)(Mg0.537Ca0.550Fe0.072Cr0.022Ti0.007Mn0.001)Al0.433Si1.971O6 (simplified to
Di59.1Jd40.9) and the ~710 ppm hydrogen content of SBB-46 was determined in [13].

In order to determine the unit cell parameters and crystal orientation, we carried out the
single-crystal XRD experiments for the 2 crystals a and b at ambient P–T condition at experimental
station 13-BM-C, GeoSoilEnviroCARS (GSECARS), Advanced Photon Source, Argonne National
Laboratory. The remaining 2 crystals c and d were measured at ambient P–T condition in the X-Ray
Atlas Diffraction Lab at the University of Hawai’i at Manoa.

At GSECARS, the X-ray beam was monochromated to 28.6 keV with the beam size of ~12 µm × 18
µm determined at the full width at half maximum. The omphacite crystal was placed in an empty DAC,
which had an opening angle of ±38◦. Two separate detector positions were used by rotating a MAR165
Charge Coupled Device detector on a rotational arm [31]. The first detector angle was perpendicular
to the incident X-Ray beam, while the second detector position was offset from the first position by 20◦

around the horizontal axis. Sample-to-detector distance and detector tilting were calibrated in the
Dioptas program [32] using NIST standard LaB6 powder. The diffraction images were collected in
both wide-angle images that covered the whole ±38◦ opening angle range and 1◦ step-segments with
1 s/◦ exposure time. At the X-Ray Atlas Diffraction Lab in University of Hawai’i, a Bruker D8 Venture
XRD diffractometer with Incoatec IµS 3.0 AgKα microfocus source, Helios focusing optics, Photon
II detector was used for collecting the single-crystal diffraction images at a wide range of scattering
angles. Diffraction data from both experiments was processed using Bruker APEX III software. For
the needs of this study, full structure refinement was not performed, and only unit cell parameters
were refined.
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We performed the Brillouin spectroscopy experiments on all 4 double-polished SBB-46 omphacite
single crystals at the High-P Laser Spectroscopy Laboratory at University of New Mexico. The light
source was a 532-nm 300-mW single-mode diode-pumped solid-state laser. The experiment utilized
a 50◦ symmetric forward scattering geometry, with the scattering angle precisely calibrated to be
50.42(5)o using the Corning 7980 standard silica glass [33,34]. Vp and Vs were determined for all 4
pre-oriented samples at ambient P–T condition for a total of 52 crystallographic directions. Each sample
was measured at 13 different χ angles (0◦, 30◦, 60◦, 120◦, 150◦, 180◦, 195◦, 225◦, 255◦, 285◦, 315◦, 345◦ and
360◦) along the 360◦ azimuth to account for any possible geometric errors with an average collection
time of 10 min per spectrum. The resulting Brillouin spectra all have very high signal-to-noise ratios
(Figure 1).
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Figure 1. Typical Brillouin spectrum of omphacite crystal d at χ = 0◦.

3. Results and Discussion

The single-crystal XRD measurements for all four crystals yielded the averaged unit cell parameters
of the SBB-46 omphacite of a = 9.603(9) Å, b = 8.774(3) Å, c = 5.250(2) Å, β = 106.76(5)o, V = 255.1(4)
cm3. The planes normal of the four crystals were determined to be: (0.9131 −0.4076 0.0018) for crystal
a, (−0.2742 0.9457 −0.1748) for crystal b, (0.4646 0.1359 −0.8750) for crystal c, and (−0.6860 −0.5145
0.5145) for crystal d (Figure 2). The density at ambient condition was then calculated as %0 = 3.340(6)
g/cm3. Omphacite crystals are known to assume one of two different symmetries, depending on
the crystallization conditions: the disordered high-temperature phase crystallizes with space group
C2/c, whereas the cation-ordered phase crystallizes with space group P2/n [35]. At ambient pressure,
the order–disorder transition takes place at 725 ◦C [36]. The omphacite SBB-46 had a C2/c symmetry
based on its high T thermal history. The difference in cation ordering was not found to have a resolvable
effect on the elastic properties beyond experimental uncertainties [37].

The single-crystal Cijs for the SBB-46 hydrous omphacite under ambient conditions were calculated
through the least-squares inversion using the Christoffel equation. The best-fit Cij model was: C11 =

245(1) GPa, C22 = 210(2) GPa, C33 = 249.6(9) GPa, C44 = 75.7(9) GPa, C55 = 71.2(5) GPa, C66 = 76(1)
GPa, C12 = 85(2) GPa, C13 = 70(1) GPa, C23 = 66(2) GPa, C15 = 8.0(6) GPa, C25 = 6(1) GPa, C35 = 34.7(6)
GPa, and C46 = 8.7(7) GPa. The root-mean-square residual was less than 53 m/s between the modeled
and observed velocities (Figure 2). The KS0 and G0 were calculated as 125(3) and 75(2) GPa from the
single-crystal Cijs under the Voigt-Reuss-Hill averaging scheme [38].
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scenario to exceed 1%, unless near‐perfect alignment of the omphacite crystals takes place in the form 
of SL‐type fabrics [45–48]. In addition, the aggregate Vp and Vs did not show any structural water‐
induced softening either (Figure 4). Therefore, it is unlikely that the hydration of omphacite crystals 
would affect the seismic properties of the subducted slab crust. 

Figure 2. Acoustic velocities measured versus laboratory χ angles for the four orientations of SBB-46.
Diamonds, circles, and triangles represent experimentally determined Vp, Vs1, and Vs2, respectively.
The dashed lines were calculated from the best fit single-crystal Cij model. Errors were smaller than
the symbols.

The single-crystal elastic properties of anhydrous omphacite at ambient conditions had been
measured [39–44] and systematically analyzed within a wide compositional range [44]. As shown in
Figure 3, within the Di–Jd solid solution, most elastic moduli showed a close-to-ideal linear mixing
trend except C13 and C23. The C33, C55, and C35 presented in Ref. [44] lay outside the trends determined
from other measurements, which can be explained by the high Tschermak content of the sample
(12 mol%). The bulk and shear elastic moduli (Ks and G), as well as most of the single-crystal Cijs of
the hydrous omphacite SBB-46, were well within the 95% confidence interval determined by all of the
previous measurements of anhydrous omphacite samples within the Di–Jd solid solution (Table 1).
A few single-crystal elastic moduli such as C13, C25, C44, and C66 showed a small decrease within the
Di–Jd solid solution (up to ~9 GPa), deviating outside of the 95% confidence interval, which might have
been caused by the incorporation of water into its crystal structure (Table 1). However, the decrease
of these single-crystal elastic moduli caused by hydration is unlikely to produce a strong seismic
anomaly. For example, the ~7% decrease of C44 and C66 caused by ~710 ppm water transforms to about
3.5% reduction in [010] polarized Vs propagating along the [001] and [100] directions, respectively.
Considering the 50–70 vol% of omphacite in the eclogite rock, as well as the elastically isotropic
nature of the garnet, it is difficult for the decrease of Vs in the eclogite rock in a realistic scenario to
exceed 1%, unless near-perfect alignment of the omphacite crystals takes place in the form of SL-type
fabrics [45–48]. In addition, the aggregate Vp and Vs did not show any structural water-induced
softening either (Figure 4). Therefore, it is unlikely that the hydration of omphacite crystals would
affect the seismic properties of the subducted slab crust.
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the data along with other anhydrous omphacite samples in the Di–Jd solid solution (Figure 4): (1) 

Figure 3. Single-crystal elastic properties of SBB-46 compared with previous studies on anhydrous
omphacites within the Di–Jd solid solution as measured by (a) Sang et al., 2011 [39], (b) Bhagat et
al., [40], (c) Kandelin and Weidener, 1988 [41], (d) Collins and Brown, 1998 [42], (e) Isaak and Ohno,
2003 [43], (f) Hao et al., 2019 [44]. The results are compared with the hydrous omphacite measured in
(g) this study. Dashed lines show the compositional dependence of Cijs, Ks, and G. Shaded regions
represent the 95% confidence intervals determined in [44].

Table 1. Elastic moduli of the hydrous omphacite sample measured in this study and the anhydrous
omphacite with the same chemical composition predicted from Hao et al., 2019 [44]. The uncertainties
for the anhydrous omphacite are defined by the 95% confidence intervals shown in Figure 3.

Elastic Moduli Anhydrous Di59.1Jd40.9 SBB-46 Di59.1Jd40.9 ~710 ppm Water

C11 (GPa) 244(4) 245(1)
C22 (GPa) 205(4) 210(2)
C33 (GPa) 254(6) 249.6(9)
C44 (GPa) 81(2) 75.7(9)
C55 (GPa) 69(2) 71.2(5)
C66 (GPa) 82(2) 76(1)
C12 (GPa) 83(2) 85(2)
C13 (GPa) 79(4) 70(1)
C23 (GPa) 64(6) 66(2)
C15 (GPa) 7.7(6) 8.0(6)
C25 (GPa) 10(2) 6(1)
C35 (GPa) 37(3) 34.7(6)
C46 (GPa) 9(1) 8.7(7)
Ks (GPa) 125(1) 125(3)
G (GPa) 76(1) 75(2)

We also calculated three elastic anisotropy indices for the hydrous omphacite SBB-46 and plotted
the data along with other anhydrous omphacite samples in the Di–Jd solid solution (Figure 4): (1) The
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Universal Anisotropy Index (AU) which described the overall elastic anisotropy for any materials with
arbitrary symmetry, (2) Vp azimuthal anisotropy Index (AVp) which was the maximum difference in Vp

along all crystallographic directions divided by the aggregate Vp, and (3) the polarization anisotropy
Index for Vs (DVs) which measured the maximum velocity difference between two orthogonally
polarized Vs that propagated in the same direction. Among these indices, only the AU for SBB-46
was slightly lower than the expected value for its anhydrous counterpart. This again suggested that
the effect of ~710 ppm water on the aggregate elastic properties of omphacite was very small if not
negligible. It was also worth noting that Ref. [44] again lay outside the trends determined from all of the
other studies probably due to the high Tschermak content (12 mol%) of the sample. This observation is
also important for the recent development of elastic geobarometry [26,27]. The elastic anisotropy seems
to be a major factor that needs to be taken into account for calculating the Ps for various geological
processes, in particular when the rock has experienced high-grade metamorphism and eclogite facies
are found [49–51].
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Figure 4. The Vp and Vs, AU, AVp, and DVs of SBB-46 compared with previous studies on anhydrous
omphacites (adapted from Hao et al., 2019 [44]) within the Di–Jd solid solution as measured by (a) Sang
et al., 2011 [39], (b) Bhagat et al., [40], (c) Kandelin and Weidener, 1988 [41], (d) Collins and Brown,
1998 [42], (e) Isaak and Ohno, 2003 [43], (f) Hao et al., 2019 [44], and (g) this study.
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4. Conclusions

For the first time, we have experimentally explored the effect of structural water on the single-crystal
elastic properties of a hydrous omphacite sample SBB-46. Most of the single-crystal elastic moduli of
the hydrous omphacite SBB-46 were well within the 95% confidence interval determined by all the
previous measurements of anhydrous omphacite samples within the Di–Jd solid solution. The small
decrease of the shear elastic moduli C13, C25, C44, and C66 is unlikely to result in a strong seismic
anomaly unless the eclogite has experienced extremely high strain and a near-perfect alignment of
most omphacite crystals takes place. Based on this study, low to moderate amounts of structural water
(~710 ppm) are unlikely to have significant impact on the seismic velocities of the subducted oceanic
crust. Further studies of hydrous omphacite at a much higher water concentration (e.g., 1800 ppm [13])
and at high P–T conditions might provide additional insights.
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